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'We are like dwarfs seated on the shoulders of giants; 
we see more things than the ancients and things more 

distant, but this is due neither to the sharpness of our 
own sight, nor to the greatness of our own stature, 
but because we are raised and borne aloft on that 
giant mass." 

Bernard of C'hartres 
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ABSTRACT 

A syntax-directed model is presented which is able to recognize and gen- 

erate two-dimensional pictures while allowing a high degree of man machine 

interaction. Starting with a field of points representing the picture, a string of 

symbols providing a structural description of the picture is produced by the 

syntactic component. The structural description, composed of higher level 

primitives (e.g., geometric symbols such as triangles and rectangles) and syn- 

tactic relations which exist between the primitives, is operated upon by the 

semantic component to provide a semantic interpretation for the picture. The 

syntactic component consists of a lexicon, u modified context-sensitive phrase 

structure grammar, und a set of transformation rules. The semantic component 

consists of a set of heuristics to abstract the picture and a modified context- 

sensitive phrase structure grammar which allows contextual restrictions to be 

applied to combinations of constituents existing at different levels of the syntax 

tree which syntactically describes the picture. Various aspects of the model 

have been programmed on the LINC (a small digital computer), the IBM 360 '50, 

and  the IBM 7072. 
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SAP:  A MODEL FOR THE SYNTACTIC ANALYSIS OF PICTURES 
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1.   INTRODUCTION 

The syntactic analysis of natural language has become a well-established technique in 

the field of linguistics. Whether a similar analysis can successfully be applied to pictures 
remains to be seen. This report is an effort to consider some of the problems which arise in the 
syntax-directed analysis of pictorial data. While it is seen that the syntactic-semantic approach 
may be used in both the analysis of linguistic and picto'ial data, many of the formulations 

developed in linguistics should not be expected to carry over to pictures. 
A most satisfactory situation would be one in which Me computer has the ability to perform 

as well as a human in the field of pattern recognition. Wh.1-: there are industrial problems which 

require the machine to make discriminations beyond that which is humanly possible, a pattern 
recognizer which could recognize checkbook signatures, postage stamps, or airplane silhouettes 

would be no small achievement. Thus, the field of psychology may be an information source 

for pattern recognition in terms of such work as has been done by the Gestalt psychologists. 
However, a distinction must be maintained between a model which simulates human intelligence 

and a model which can provide the same results as human intelligence. 
In developing this report, the pictorial data was restricted to straight line figures which 

have the semblance of cartoon-like drawings with no field of depth. Thus, the pictures may be 
considered to represent three-dimensional objects projected onto a plane with the point of view 
of the object being perpendicular to any one of its major axes. In the following chapters there 

is no distinction made between the terms graphics and pictures implying that the digitized 
points of the pictorial data can be the result of drawing on a cathode-ray tube with a light pen 

or scanning a hard copy photograph. 
As a formal definition, the picture which is presented to the   computer is called a scene. 

The  scene,  in  turn,  is composed of figures.    The  figures  are built up from constituents called 

primitives.     The   higher  level   primitives   for  the   examples   used   in   this   report  are geometric 

symbols, such as   triangles, circle, etc., and   the figures are houses, trees, etc.   The primitives 
are  combined  to  form  the   figures  by  syntactic relations.    The  syntactic  relations used   in the 

present examples are on top of, etc. 
This report presents a model which provides an approach to the syntactic analysis of 

pictures. As indicated earlier, the pictures are two-dimensional patterns which have significance 

in the real-world. The word unaly/.er is meant to indicate the ability to both recognize and 
generate pictures. Syntactic analysis indicates thai a structural description is obtained, 
describing the topological features of the picture. It is on the basis of the structural de rip- 

tion that the pattern recognition (called semantic interpretation) is accomplished. 

The  model,  SAP  (.Syntactic  /Inalyzer of Z'ictures),   was  developed  based on  an interest 
in   the   general  methodology  and  philosophy  of  syntax-directed   analysis,   and  as  such, provides 
an   overall  view   of the  problem.     The  model,   as   described  in  this   report,   is composed of two 
major components,   a  syntactic component and a  semantic  component.    A  synUx-directed meta- 

language to facilitate man/machine interaction is   also described in detail. 
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An outline   of SAP  and the   ability  of the  user  to  interact is  represented in Figure 1. 

The set of two-dimensional pictures acceptable to SAP constitutes a language L.   The syntactic 
component  of  SAP   accepts  a  picture   L.   and  translates   it  to  a one-dimensional  string L*., 

This  one-dimensional   string L*,   m   a  structural  description of the  picture  L,.  The  set of all 

structural descriptions of L constitutes a language L*.    The string L*,  is sent to the semantic 

component to  allow  an  identification or Label,  to be  applied to picture  L^    This process is 
represented by   the   solid  lines  in  Figure   1.    The  inverse  process  is   the  insertion of a Label, 

into  SAP,   whereby   a  picture  L,   is generated.     This   is  represented   by the   dashed lines in 
Figure   1.     It  is   interesting  to  note   that  the  use  of L.   or Label, as input does not uniquely 
determine the other as output. 

The user is  able to present SAP with a syntactic string L*,.    A syntactic metalanguage 

L**   allows  the  user to present SAP  with only  well-formed strings.    A  structural description 
created by the   user can be sent to the semantic component (solid line) to receive a Label, or 
sent to the syntactic component (dashed line) to generate a picture. 

The  second  -hapter describes  and defines  the basic concepts  which are taken from the 
fields  of linguistics   and  computer  science.    The  nature  of graphics   is  discussed as  is the 
difference bef een problems   of the  syntactic analysis of a  natural   language and problems  of 
the syntactic analysis of pictures. 

The   third  chapter provides  a   survey  and contrast of the various   syntax-directed pattern 
recognition systems which have been described in the literature. 

The fourth chapter is a formal presentation of a syntax-directed language which has been 
designed to enable  a user to describe by a one-dimensional string of symbols the two-dimen- 

sional type of pictorial data that SAP is able  to consider.   The strings are composed of symbols 
representing the geometric primitives and syntactic relations which comprise the pictorial data. 

The   fifth  chapter  describes  the   syntactic  component of SAP.     Rules  are presented to 
combine a set of digitized   points  into lines and the  lines  into geometric  symbols.    A lexicon 

is   used  to  obtain   the  syntactic   relations   between  the   geometric   symbols.     A   syntax  tree is 
formed and from this a linear string is derived  to represent the syntactic structure of the picture. 

The   sixth  chapter  is  a description of the   semantic   component of SAP.    The syntactic 
string   is   abstracted   to   obtain   individual   figures   and   their  basic   characteristics,  or Gestalt 
features.    A semantic analysis using context sensitive rules attempts to identify the figure on 

the  basis of its  syntactic  structure.    Unidentified figures  are then  identified by context sen- 
sitive rules in terms of the  syntactic structure of the scene. 

The   seventh  chapter provides   a  discussion  of possible  further  extensions of SAP and 
syntax-directed   pattern   analysis  models   in   general.     Also  offered   is   a   discussion  of the 
advantages and disadvantages of such a model. 

The   eighth  chapter contains   a   summary  and  conclusions of the  work  presented  in this 
report. 

In Appendix 9.1 is contained a description of the implementation of SAP on the L1NC1 

in LAP62, the IBM 360/50 in LISP IS3-4, and the IBM 7072 in FORTRAN. Appendix 9.2, 

contains a listing of the grammars and transformation rules presented throughout the report. 
To provide a basis for the discussion of the following chapter, it will be assumed that 

graphics (or two-dimensional pictures) is some form of language. The terms graphics and pictures 
will be used interchangeably. Whether the two-dimensional picture language should be considered 
a natural, artificial, or other type of language is unclear.    While no claim is made for a picture 
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language as being a form of natural language, to understand better the nature of at least two- 
dimensional pictures, they will be described in terms of some of the considerations given to 
English by a  structural or syntax-directed   approach to natural languages. 

The choice of geometric symbols as the higher level primitives was made partially as a 
matter of convenience and also on the basis of the desired graphic input. It was required that 

the scenes be rich enough in contextual information to allow our model sufficient opportunity to 

be tried but not overwhelmingly complex as to cause an excessive number of side tracking 

problems. Thus, it was decided to work with out-door type scenes as found in the country or 

city. In addition, it was thought best to begin work in two dimensions. In view of this, a 

basic set of geometric symbols were chosen. It was rather surprising the large number of 
sophisticated figures which could be drawn from the small set of geometric primitives. A page 
of these scenes is found in Figure 2. However, it should be noted that the pattern recognition 
Of these particular scenic figures is irrelevant to the goal of indicating a general approach to 
the syntactic analysis of pictorial data. 

The   syntactic  string  which is  processed by the pattern recognizer may be  considered a 
data  structure.    This data   structure  allows  not only  the  syntax of the  graphic  input to be con- 
cisely represented, but also allows the semantics  of the   scene to be obtainable.   The semantics 
of the  scene are the various meanings or recognitions that can be made in  conjunction  with the 

figures   of  the   scene,   though  other  semantic   levels   of pictorial  expressions   could be defined. 
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2.   BASIC CONCEPTS AND CONSIDERATIONS 

2.1    SYNTAX-DIRECTED PATTERN RECOGNITION 

As indicated in ;he introduction, syntactic analysis is meant to imply both the generation 

and the recognition of pictures. However, strictly speaking syntax-directed analysis refers to 
the recognition of patterns. 

As indicated by linger. tiiere jg ,, distinction between pattern recognition and pattern 

detection. 

Pattern   detection   consists  of examining  an   arbitrary   set of figures and 
selecting   those   having   some   specified   form.     Pattern   recognition    con- 
sists   of  identifying   a  given  figure   which   is   known   to   belong  to one of 
a  finite set of classes. 

Patterns   can  be  considered  as  a  large number of ordered discrete points.    By giving an 
identification   or   label   to   a   pattern   essentially   a   many-to-one   mapping   is   being performed. 
Accepting   pattern   recognition   to   be   a  many-to-one   mapping,   the   difficulty  in   pattern recog- 
nition  becomes one   of determining what operations  will  perform  this mapping.    The operation 

which  performs   this  mapping must obtain  a  set of measurements  (n-tuples)  which characterize 

the pattern.    Thus,  a   major problem of any pattern recognition model is the choice of measure- 
ments  with which it attempts to characterize the patterns   which it wishes to name. 

The   syntax-directed method of pattern recognition  essentially  analyzes  the patterns for 

connectivity and topological features.   By considering the topology and geometry of the patterns. 

sets  of n-luples  are  formed,  which  are  geometrically  and  lopologically related.    The formation 
of  these   sets   is   accomplished   by   a  grammar.     The   grammar may  be  providing  a syntactic or 

semantic analysis.    Hence,  a syntax-directed pattern recognition model may be represented  as 
a set of grammars  which serve  as  input to the computer along with  the input pattern, which is 
to  be   identified.     The  computer  then   serves  as   a  translator  which operates  according to the 
grammar rules to translate  (map) from a picture L. to its Label.. 

The  input of the grammars for the  syntactic and semantic analyses  constitutes providing 
a syntactic  component and   a semantic component to the computer.    Ibis   is shown in Figure 3. 
In   terms   of  SAP,   it  is   actually   the   semantic   component which  performs   the recognition or 

labeling   of   the   picture.      The   syntactic   component  provides   a   structural   description  of the 
picture which allows this recognition to take place. 

2.2 THE PHRASE STRUCTURE GRAMMAR 

A graphic or pictorial language L  is considered to be a subset of the set A* of all finite 

arrays   of   symbols   from   an   alphabet  A.     The   language   1,   is   generated  by   the set of alpha- 
betic   symbols   A   and a  set of rules  for combining  these  symbols  into  a   hierarchy of consti- 
tuents.     The   alphabet  plus   the   set  of  rules   is   called   a   grammar.     Essentially, a grammar 

provides   a description   to  account  for observed  patterns,   and   thus  may  be  considered  an ab- 

straction  of   these   common   patterns.     A   theory   of   graphics   would  be  required   to   choose an 
adequate   grammai   on   the  basis  of  given   graphic   data.     While   criterion  used   in linguistics, 

such   as   Chomsky's*   descriptive   and   explanatory   levels   of  adequacy   might  be   valuable  it 
certainly would be premature to propose such criterion for a starling point in a theory of graphics. 
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The   type   of  grammar   which   is   used   to  perform   the- analyses  of the   graphic  or pictorial 
data   is   called  a   phrase   structure   grammar  (PSO).     While   the   components  of SAP  use modifi 
cations of the standard PSG, a definition of a PSG grammar is as follows; 

Essentially   a   phrase   structure   grammar,   K.   is   a   finite   set of productions of the lorm, 
<i—»-ü where, 

(i)   u is a nonnull string of symbols of the vocabulary V. 
(ii)    6 is a single symbol of the type called a nonterminal symbol 

of the vocabulary V. 

dii)    There is one 0 called the goal, S, where the goal is never a 
member of a 0 string. 

Ihe vocabulary V is the union of the set A of alphabetic symbols called terminals 
symbols and a set N of syntactic metalanguage symbols used for defining the Ian- 
guage L and which are called nonterminal symbols, 

A phrase structure grammar defines a language by forming derivatives of the goal, S.   If in 
applying   a   production   rule  6—*■ xji,   the   string ß   is   said  tobe  a  direct derivative  of the string 

a  (a > ß)  if there  are   strings y  and 5   such  that a--y<hh  and ß^yCiB.   The strings y and ß may be 
null   in   the  case   that  the  production  rules   are   context free,  otherwise  the  rules  an  considered 
context   sensitive.     The   operation  a*>/3   is   defined   as   the   case   where there exist strings (/„. 

"1 "i such thato=a0, «0 >>„,,...,  a[_l^ul and 04=18.   In this case ß is called a derivative of a 
and the sequence, a=an=^a•        en    1 —\n.   a ;. „»H.J      1 .•        r o      ■ ' "   /   1 "1-1-7>"i=P '*< called a derivation ol fs and a. 

The derivatives of the goal are called sentential forms. Those sentential forms which 

consist only of terminal symbols are called the set of sentences (for pictorial data, the sentences 
are called scenes) and it is the set of scenes which comprises the language L.   That is, 

L -   I s     S* > s and s f A*| 

2.3    PARSING STRATEGIES 

The derivations of the scenes of L from the goal S are often represented by tree structures. 

The derivations provide a   structural description   (or parsing) of the scenes.    The tree structures, 
called syntax trees, explicitly represent the structural descriptions or parsings. 

The derivations of the  sentences  from the  goal S by means of the  PSG use basically om. 

of  two algorithms  or  parsing strategies.     These  are  called  top down  and bottom up strategic.,. 
1.    The  top-down  strategy is  completely goal oriented.     The main goal S is 

chosen first.   This goal chooses a set of subgoals.   The subgoals hope to 

find a derivation of the  scenes from S by substituting the right hand side 
of  the  production  rules   in   the  place  of the   subgoals.    The substitution 

forms  a new   set of subgoals.    Thus, each  subgoal  in turn chooses a set 
of subgoals.    If a subgoal  fails its task it is rejected and a new subgoal 

replaces  it.    It is  hoped that the  subgoals  will  eventually reach  the ter- 

minal string.    The top-down strategy causes infinite looping if the strings 
are  analyzed from  left-to-right and a left recursions  rule   occurs,   that is 

gij—»'^{(/(j.     The  parsers   which   use  a  top-down   strategy  are sometimes 
called predictive,  since at each step they attempt to predict the subgoals 
to be used to reach the terminal   string. 
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2.     The   bottom up   strategy  has  only   implicitly  the   long range  goal.   S.     1 he 
strategy  is  essentially  an  attempt  to  substitute   substrings  which  are the 
right hand  side of production rules  by their corresponding left hand side. 
In   this  manner,   it  is  hoped   that  eventually   the   single   symbol   S.  will be 

reached. 
Both  parsing   strategies   are  used  in  SAP,     The  syntactic  component  uses  a bottom up strategy 

to obtain  a  structural  description of the  pictorial  input.    The  semantic  component uses a right 
to-left modified bottom-up parsing to abstract the structural description provided by the syntactic- 

component.   The semantic component also uses a modified top-down strategy to assign a semantic 

interpretation  to  the  figures  of the   scene   and  a   bottom-up   strategy  to  assign a  semantic inter- 

pretation to the pictorial   scene. 

2.4   THE NATURE OF PICTORIAL DATA 

One aspect of pictures which should be mentioned is the presence of pictorial universals, 
though as Hockett7 points out. we do not want to invent language universals but discover them. 

Some of these universals are; 
(i)   Arbitrary configurations of pictorial data (figures) can be created at will, 

(ii)   The newly created figures can be considered discretely defined messages, 
(iii)   The figures may be assigned meaning independent of any physical or 

geometric form of the figures and also independent of the spatio-temporal 
coordinates of the figure. 

(iv)   For any non trivial graphic language, there is the possibility of ambiguous 

and anomalous pictorial data. 

As   defined  by   Chomsky .8 one   should  note  the  difference  between  a   competence  and a 

performance model of the   s\ntax of the  language.    Competence  is to be considered the viewer's 

knowledge   of graphics   while  performance  is   the  viewer's   actual  use  of this  knowledge.     It is 

the ideal viewer's intrinsic competence which is represented by a grammar.   The grammar assigns 
to   each  figure  a  structural  description  which  indicates how  this  figure  is grammatically under- 
stood  by   the   ideal   viewer.    The  acceptability of a figure  refers  to  the  performance model and 
based   on   such   factors   as  memory   limitation   it  is   not  of present   interest.      The competence 
model is concerned with the grammaticalness of a figure. 

A pictorial message goes through the same encoding and decoding processes   as a linguistic 

message,    Thus,  an  individual  encodes  a graphic message  by  creating it in  such a manner that 
the   message   can   be   visually  perceived.     The  graphic  message   is   then  decoded by  either the 
original   sender   or   another  viewer  when   an   attempt  is  made   to  understand  the message.    The 

message can be  a  single alphabetic symbol  called a primitive,  a structure composed of several 

primitives   called   a   figure,   or  a   structure   composed  of one  or more   figures   called  a scene. 

The   encoding   and   decoding   of   a   graphic   message   is   accomplished   by   syntactic and 
semantic   components.     It   is   the  decoding operation,  performed  by  the   syntactic  and semantic 
components,   thai   is   generally   considered   syntax-directed   pattern   recognition.     The syntactic 

component parses the graphic data.    The parsed graphic data is represented by a structural des- 
cription   (SI))  which   indicates   the  primitives   comprising  the  graphic data  and   the  syntactic re- 

lations  between   the  primitives.    The   semantic  component is  highly dependent on the syntactic 

component and probably  should be called the  semantic-syntactic component.    The semantic com- 
ponent accepts  the  struclura!  description as   input and provides   a semantic interpretation   (SI) to 
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the graphic data.    This  semantic interpretation indicates whether the data is recognized, ambi 

guous, or anomalous. 

COMPONENT/^ 

structural 
description 

1 *, 

semantic 

inter pretalion 
Label. 

A picture L, may actually have more than one structural description. Thus, L*| repre- 
sents the set of structural descriptions of L., A member of the set L*,, structural description 

j of picture L., is represented as L*||. 

Similarly, picture L. may have more than one semantic interpretation, in which case the 
picture is considered ambiguous. Thus, Label, represents the set of semantic interpretations 

assigned   to   picture   L|,     A  particular   identification  or  label   of L|   is   represented   as Labeli,. 

The decoding operation can be represented by the following equations; 

SD(L = L*, 

where, L*, -   {L*i||   and if for L*,), 
(i) max j ■ (), then Lj is not well-formed, 
(ii) max j -   1. then L. has a single structural description. 

(iii) max j   ■  I, then L. has multiple structural descriptions (multiple parsings). 

SKL*.) = Label, 
where. Label.= L {Label,i}   and if for Label,., 

(i)   mix j = 0, then L. is anomalous, 
(ii) ma.i j = 1, then L, is singularly identified, 
(iii) max j   • 1, then L, is ambiguous, 

In  the  remainder of the report,  the  subscript j  will  be  left off unless  a reference is to be 

made to a particular structural description or identification. 

The graphic data or picture may also be considered a geometric graph.    A geometric graph 

in   two-dimensions   is   a   set V  =    | v. |    of points  and a set E  ^   | ei } 0f simple curves satis- 

fying the following conditions: 
(i)   Every continuous, non-self-intersecting curve in E whose end points 

coincide contains exactly one point of V. 

(ii)   Every continuous, non-self-intersecting curve in E which joins two 
distinct points contains precisely two points of V, and   these agree 

with its end points, 
(iii)   The curves of E have no common points, except for points of V. 

Thus,a geometric graph is a geometric configuration or structure, in this case in two-dimensions, 
which  consists of a set of points  interconnected by a set of nonintersecting continuous curves. 

An example  is shown on the following page.   The fact that a figure can be considered a geometric 

graph will be used in Chapter Five, 
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2.5   LINGUISTICS DATA VERSUS PICTORIAL DATA 

While the application of linguistics to graphics will be earned through the remainder of 

the report, it is worthwhile to note some major difficulties in syntax-directed pattern recognition 

which, for the most part, do not appear in linguistics. 
(1) A figure can be parsed from almost any direction, where theoretically 

each parsing readily can provide the same information. While this in 

itself is not a problem, since the viewer can always approach the figure 

from one standard direction if necessary, this flexibility indicates that 

restrictions must be considered because of the astronomically large num- 

ber of parsings of only a slightly complex picture. As indicated earlier, 

the set of parsings of picture l^ is represented by I,*,, where a parti- 

cular parsing j of picture L, is L*!,. 

(2) The syntactic relations of a grammar have a hierarchy which limits the 

number of possible parsings of a figure into its primitives. However, 

for the restricted pictorial data being considered (elimination of depth) 

any correct parsing of the figure provides essentially the same structural 

description of the figure and hence, ideally, the same semantic inter- 

pretation in terms of pattern recognition. 

(3) Given a parsing of a figure, in a great m i) cases the semantic iiUer- 

pretation procedure is highly context depei dent. 1 such a situation, a 

primitive cannot be semantically interpreted independent of the surround- 

ing primitives to which it is syntactically related. 

(4) The elements of the structural description ami the ease with which the 

structural description is produced is dependent on the choice of the 

primitives and the syntactic relations between the primitives. However, 

an importanl point in which graphics differ from linguistics is nisi how 

the parsing is to be performed. In linguistics, the primitives or lexical 

items (words) are clearly distinguishable in any terminal siring. Unfor- 

tunately, in graphics this is noi always the case. For example, consider 

the simple graphic grammar composed of the two primitives, triangle and 

rectangle, and the single   syntactic relation, an lop of. 



The f igure. 

/ 

is   composed of a   triangle  on   top of a rectangle  with  their common boun- 

dan   removed.    But  for this  figure  to be considered well-formed,  it must 

be   parsed   into   a   triangle   and   a   rectangle,   both  of  which   are implicitly 

contained   within   the   figure.      In   linguistics   the   lexical   items   are  con 
tamed  explicitly. 

(■■^ Not only are the primitives often implicit in the pictorial data but it is 

also the case that the syntactic relations are always implicit in the 

data. Lexical items are concerned with only one dimension and hence 

are s\ ntactically related in a string by the singular relation of linear 

luxtaposition, or the relation of next to. Two-dimensional pictures are 

concerned with juxtaposition in an infinite number of directions. The 

significance of the additional dimensions to juxtaposition can be seen 
by the  example. 

A 

B 

where A can be considered on top of B, but must be  snecified also to the 

right of or to the left of B to completely determine the scene. 

(6)    As   indicated   in   paragraph   number  (4).   the   fact   that   the  primitives   are 

contained implicitly in  the pictorial  data is different from  the   occurrence 

of words in a natural language.    However, this difference could   be elimin- 

ated if the   equivalent of words  in linguistics are lines  in figures.    While 

this equivalence will be seen   to   shortly fall apart, the analogy is carried 

further.      Both   words   and   lines   are   clearly   defined   in   their respective- 

data.    Higher level  categories  such as NP, VP,  etc.  are contained   impli- 

citly in the linguistic data just as higher level categories such as triangle, 

square, etc.. are contained implicitly in the pictorial data.   Unfortunately, 

the analogy collapses when the semantic aspect is   considered.    For while 

words   have   grammatical   and   semantic   significance   in   themselves,  the 

line  has  only  grammatical   significance   in  isolation  from  i's contextura! 
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surrounding. The same difficulty arises if words arc equated to higher 

level constituents such as triangles, tor the triangle has no semantic 

significance independent of its use in a specific figure. 

An   alternative   is   to   consider  letters  of  words   to   be   equivalent  to 

lines of a   figure.    In this case,  both  letters and lines arc   .learly defined 

in    their   respective   data  and   neither   have   any   meaning   in   themselves. 

It may even he argued that except for figures composed of one dimensional 

primitives (bubble   tracks,  etc.)  lines  take on no  individual meaning even 

within    their   contextual    environment.        This   is   certainly    the   case  for 

letters,   therefore   letters   and   lines   appear   to   be   reasonably equivalent. 

But the  analogy again can go  no further,  for while  letters  form  words and 

lines   form  geometric   symbols   it  has   been   seen   thai   words  and geometric 

symbols   are  not  equivalent  in   their  respe;:tive  languages.     However,  the 

equivalence   between   constituents   of   linguistic   data   and   pictorial  data 

can   possib'y  be  made   on   the   following  basis.     Pictorial   figures   can be 

equaled   to  words.      The  primitives   which   comprise   the   figures   are  equi 

valetit to the letters which comprise the words.    The lines winch comprise 

the   primitives   are   the   same   as   the   strokes   which   comprise   the  letters. 

Finally,  the  figures   combine  to form  a  scene  as do the  words combine to 

form a sentence.     This equivalence is  summarized in   Table  I. 

(7)    A major difference   in  the   components  which  perform  the  analyses of the 

graphic   and   linguistic   data   is   seen   by   the   fact   that   the   syntactic  and 

semantic   components  of pictorial   analyzers   are   composed  of essentially 

phrase  structure  grammars.    The  transformational movement  in linguistics 

considers   the   semantic   component   to   be   composed   of  what   I'odor  and 

Katz'*'0  call projection rules.    However,  as pictorial  analysis develops, 

any   form  of  the   PSO  may   very   likelv   be   found inadequate   for semantic 

interpretation.     It   should also   be   pointed  out  that  I'odor  and Katz have 

not    been   having   overwhelming    success   with   their   projection   rules.'' 

The    above   problems   will   be   discussed   in   greater   detail   in   the   following   sections. 

However,   the   fact   that   the   general   syntactic-semantic   approach   is   readily   applicable   to  both 

linguistics   and graphics   leads  one   to  believe   that,   within  human  conceptualization,  pictorial 

and linguistic analyses are highly intermeshed.    One possible major link between the languages 

is   the  Ciestalt factor, which  to a large extent has been overlooked in  linguistic analysis.    The 

Gestalt   factor  will  be  considered  again   in   a  later  section,  though   it may  be   argued   that in a 

discussion on   the  competence model,  the  (iestali  factor is out of place being  an aspect of the 

performance model. 

2.6   THE SYNTACTIC AND SEMANTIC COMPONENT GRAMMARS 

The actual choice of a grammar in terms of the primitives and a set of relations which 

are able to provide a syntactic and semantic interpretation to the graphic data is a very difficult 

one. Assuming that a number of grammars are available, the choice as to which grammar will 

most efficiently and effectively process the data is more difficult that the similar problem in 

linguistics. If a hypothetical multilingual machine is presented with linguistic data it would 

first search  the  lexical units   of the data to determine with which language   it is   to be dealing. 
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I'kional Data 1,inguislic Data 

Scenes Sentences 

Figures Words 

Ptimi lives Letters 

1 ilics Strokes 

Points Points 
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I'he decision as to what language immediately limits the choice of grammars from which the 
machine can choose to further analyze the data. As indicated earlier, the primitive units in 
pictorial input are not so easily discernible. 

However,   this does  indicate  an  approach  to  the problem.    If a graphic processor (human 
or machine)   is  confronted with da   i,   it will   choose   a  grammar which  seems most applicable. 
If this grammar does not allow a satisfactory  semantic  interpretation to be made,  the grammar 
if.  discarded,   a new  grammar is  chosen  and the  process  is repeated.    While  it may be argued 

that the  choice  among   grammars   is  never really  made  since  an  individual  has only  one  large 

ulti-leveled pictorial grammar, the argument proves nothing. Combining several small grammars 

into one large grammar still requires the parsing of the figures into particular primitives. Which 

primitives this will be requires a somewhat trial-and-error process to take place. The important 

factor is the development of a set or orientation. For example, suppose an individual is pro- 

cessing some data and finds the parsing to be reasonably easy but the semantic interpretation 

to be somewhat confusing. When told that what he has been calling photographs of houses and 
trees are really photographs of paramecium, he realizes his set orientation was wrong. 

m 
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3.    A SURVEY OF THE LITERATURE 

The following briefly outlines some of the syntax-directed models which have been 

described in the literature. An extensive literature survey on syntax-directed models developed 

before  Wbb has been made available by Jerome Feder.12 

The work of R.L. Clnmsdale12 et. al, was one of the first pattern recognition programs to 

use a structural description of the figure to be recognized. The recognition is performed 

In comparing a statement describing the basic features of the pattern to be recognized 

to a set of statements stored in the computer which relates to named patterns. The statements 

describing the figure is found by a scanning process which segments tile figure into groups, 

and an assembly process which obtains descriptions of the groups determines the relation- 

ships between the groups, and which compresses and codes this information to form the state- 

ment. Two implemented systems have been produced, one using a key word for the pattern 

to provide a more rapid selection of the  standard pattern statement. 

Al the National Bureau of Standards, Russell Kirsch14 devised  one of the earlier programs 

which  uses an immediate  constituent  grammar  to  analyze  pictures of black  and white triangles, 

squares,  or  circles.     A  limited model   accepts  both pictures  and   sentences describing the pic- 

tures  as   input,     fhe   sentences and pictures  are parsed   by phrase  structure  grammars  and then 

translated   into  an   intermediate   logical   language.    The   logical interpretation  of the sentences 

are then tested to determine their truth value. 

R, Narasimhan18'16,17,18'19 while at the University of Illinois, had considerable success 

with    the   syntax-directed   analysis   of   bubble   chamber   pictures.     A   program   called BUBBLE 

SCAN performs   the  syntactic analysis.    After forming line elements from points by a rectangular- 

array   representation,   the   line   elements   are   labeled   according   to   their  horizontal,   vertical, or 

diagonal  direction,     Hie  vertices  connecting  the  line  elements  are  labeled   providing a labeled 

graph  of  the  picture.    The   line  elements  form  higher  level  constituents  called  tracks and the 

tracks   form   the   highest   level   constituents  on   the   basis   of the   type  of constraining vertices. 

1 he   entire   parsing   process   uses   a  bottom-up   scheme.     A   second  program, BUBBLE TALK, 

allows  on-line    conversation   in   connection   with   the   analysis   of  the  bubble   chamber picture s. 

1,   is    able   to   function   as   a   complex   information   retrieval   system   in   order  to   locale picture 

objects   with   specified   attributes.     Narasimhan   has   also   dealt   with   the   problems   of noise. 

preprocessing,  and   briefly with the   relation of syntactic description of pictures to the (iestalt 

phenomena  of visual perception, though this last work appears rather inconclusive. 

While    the    work   on   pattern   recognition   by    Herbert    Ireeman20'2 ' ^2'2 3   at   New  York 

Universit)   does   not   explicitly  use   syntax-directed   analysis,   it  is   interesting  to  note   that the 

encoding process  which he  applies  to describe  an object's  contour is  the   use of a rectangular 

grid as docs  Narasimhan,    ireeman has described manipulations of  the   codings   such as expan- 

sion   and   rotation.     For the  work  on  SAP.   the   direction  grid   has been formalized as a grammar 

tor encoding a set of boundary points into labeled lines. 

Some work on the grammatical forma li zation of handwriting has been done by Murray 

(.llen24,25 at Mil. 'I hough origin,illy developed for the generation of hand-writing, the research 

has developed to the stage of being used for computer recognition programs. Foul basic 

strokes, called segments, are defined. These segments are transformed by rotation, reflection, 

and translation or combined to form IX strokes whose sequences are sufficient to describe the 

English upper and lower case letters, I he rules for collating the strokes may deal with 

letters or with strokes between  letters. 
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Fot his master's thesis at the University of Illinois. Kenneth Breeding26 developed a 

grammar to describe simple planar pictures by labeled line segments and selected vertices. 

The drawings are composed of straight lines oriented in either a horizontal or vertical direction. 

The selected vertices are those which have a degree of three. The manipulations of the strings 

describing the pictures is similar to. though surpassed by, the work of Freeman. 
Robert S. Ledley27.28,29,30 ,K1S done some interestjng work |n tht. syntax.dir(.cted 

analyses of pictures of chromosomes at the National Hiomedical Research Foundation. Alter 

obtaining the boundary of an object in a photograph, the object's contour is analyzed by a 

grammar which has five basic curves as its terminal symbols. These curves form higher level 

constituents by a bottom-up parsing which determine whether or not the object is a chromosome. 

Ledley's earlier work in the syntactic processing of pictures was concerned with what he called 

concept recognition. One technique of concept recognition was termed deductive reference, 

winch was essentially pattern recognition by a bottom-up parsing using a grammar lor pictures 

such as cartoon-like houses. The second technique of concept recognition, inductive inference, 

uses a General Problem Solver approach by guessing a final goal or recognition solution of 

the picture and then applies a set of heuristics to reduce the difference between a syntactic 

description of the guessed solution and a syntactic description of the input picture to be recog- 

nized. Ledley's use of the OPS approach lor an initial guess performs somewhat the same 

process as the abstracting technique SAP uses in the semantic component 

William E. Miller. Alan C, Shaw3l,32.33 ;md olher „^^ of ^ Computet Science 

Department at Stanford University and the Stanford Linear Accelerator (enter are developing 

a system which is called a picture calculus to recognize and generate pictures. The picture 

calculus includes a picture description language (1>1)U. rules for manipulating pictures, and 
processors for the parsing and recognition of pictures. 

The primitives of PDL are essentially directed line segments which have a head and a 

tail. The binary operators of PDL descr.be various possible concatenations of the primitives 

such as head to tail, tail to tail, etc. The unary operators of PDL, for example, reverse the 

tail and head of a primitive. The language has been used so far for the recognition of particle 

Physics pictures and other graph-like structures and to permit the drawing and transformation 

of line drawings on a CRT. The picture recognition scheme, as used on spark chamber photo- 

graphs, applies a top-down parsing analysis to a string of primitives which represent the struc- 

ture of the picture. The picture generation scheme also stores the picture description as a 

string, which can be parsed to allow changes to be made in the picture description. Further 

extensions are to include a continuous transformational operator which could give the effect 

of motion, the development of PDL to utilize what might be considered higher level topological 

concepts, such as contained within, adjacent, and above, and the consolidation of the recog- 
nition and generation schemes to facilitate learning by the system. 

A   somewhat  different  syntactic  approach  has been  taken by William Martin3" and Robert 
Anderson.35,34    M,irt|M    at  v|, ,    ig  concerned  Wlth  t.|king  ,, mathematical  expression  whlch ls 

stored as a tree structure and creating a visual display of the expression. Lach symbol is 

expressed in a grammar by a special form, each form is then inscribed by a dimensioned rec- 

tangle. The dimensioned rectangles combine to create a higher level dimensioned rectangle 

which is then centered on the cathode-ray lube and the contained expression displayed. Ander- 

son, for his Ph.D. dissertation, has provided a grammar lor the recognition of various mathe- 

matical expressions which are displayed in two-dimensions. The model partitions a displayed 

configuration    into   syntact c   subcalegories   which   are   inscribed   in   dimensioned  rectangles. 
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The rectangles are. in turn, positionally related. However, as Anderson36 points out, he is not 

working   from   a   tree   structure  to  a  display   as   Martin,   but,   from  a display  to a tree structure. 
M.B. Clowes,37'38 at CS1RO in Australia, has developed an interesting grammar for 

describing numerals in terms of the contiguous edges which form their boundary. Clowes has 
also re.ated this work to similar research in physiology and psychology. 

These models all use syntax-directed analysis for at least some aspect of their total 
analysis. A comparison of the various models is made difficult, because one uncontrolled 
factor which, unfortunately plays a large role in determining the overall models' appearance 
is the type of input patterns being considered. As pointed out in the previous chapter, the 
nature of the data determines the type of primitives and syntactic relations which comprise 
the data. 

For example, the fact that Narasimhan considered figures composed of only one-dimension- 
al constituents (straight lines) eliminated an interesting semantic problem. When a line was 

found in Narasimhan's bubble chamber picture, it was considered a track. Hence, the line is 

able to receive at least a partial semantic interpretation immediately. However, in considering 

the primitives used by SAP, they generally cannot receive a semantic interpretation independent 
of their context. 

A further simplification in analyzing figures of bubble chamber tracks is that the syn- 
tactic relation between them is singularly concatenation. This allows the syntactic descrip- 
tion to be directly represented as a one-dimensional string and processed by a grammar for 
semantic interpretation. However, if the primitives are two-dimensional, as in the case of 
SAP, a syntactic analysis must first process the figure to obtain some form of explicit repre- 

sentation of the topological relations between the primitives. This representation may then 

be operated upon the grammar to receive a semantic interpretation. However, it should be 
noted that both Narasimhan's and Miller's work has proved very satisfactory for the pattern 
recognition of bubble chamber tracks. Similarly, Ledley's pattern recognition of chromosomes 
considers only the syntactic relation of concatenation. In all cases the concept of contiguity 

is the determining factor. The difference in approaches essentially determines the number of 

different values under which contiguity is considered. It is interesting that Clowes does not 

consider numerals to be composed of one-dimensional line segments but by using a grammar 
which describes a figure by the line segments which form the figure's contour, he uses only 
the relationship of next to. 

The use of figures whose primitives are one-dimensional lines which require only the 
syntactic relation of concatenation does not necessarily eliminate the problem of multiple 
parsings of the figure. As is shown in Chapter 5. a two-dimensional figure may have a very 

large number of different parsings. This is mainly because the topological relations which 
have been chosen are associative when serving as operators in a syntactic description. Ander- 
son avoids this problem by not explicitly using any topological relations in the syntactic 
description. 

While Grimsdale uses topological relations between segments of alphanumeric figures, 
the semantic interpretation is accomplished by phrase matching techniques. The use of a 
grammar would be a strong addition to his model. Though Grimsdale's results must be taken 
cum grano salts (with a grain of salt), as Uhr39 states, Grimsdale's work "is generally accepted 

as being one of the most powerful and - intuitively and psychologically - satisfying of pattern 
recognition programs." 
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Breeding's consideration of figures composed of horizontal and vertical lines does no 
more than provide a notation for such figures. Its use in pattern recognition does not appeal 

promising. Kirsch's work is interesting and apparently has been carried futthet in the direction 
of the syntactic analysis of biological images.40 

Anderson's approach of syntactically describing a picture in terms of its components and 

pattern recognizing the picture by the positioning of coordinates should apply to most of the 
two-dimensional pictures which SAP considers. His method would possibly have difficulty with 

some of the structures because the relative size of spacing between constituents is not tested. 
The fact that his syntactic rules for pattern recognition are not in the form of a phrase structure 

grammar  is  of no  importance  and  that  they  do  allow  fine liming of the recognition process is 

I highly   advantageous,   but   by   not   explicitly   considering   the   syntactic   relations   between the 

primitives  would  cause  his model  to be  cumbersome  if used in a man machine  system.    Nara- 

simhan's   BUBBLE   TRACK   allows   for   a   reasonably   interactive   system.      Miller's   Picture 
| Description   Language   is  an  approach  to  this problem  though  the   lack of topological relations 

• is a  limiting  factor.    Miller32 points  this out  in   stating that the picture  calculus 'is not very 
convenient   for   describing   complex   topological   concepts   without   inclusion  of  concept recog- 

^ nizers." 

While  a phi, •: ?  str icture grammar in  linguistics  can  serve  as either a generator or recog- 
nizer   of   sentences,   in   two dimensions   a   single   syntactic   relation   between   two constituents 

I does   not   completely   determine   their   position.      To   get   by   this   difficulty.   SAP   requires the 
syntactic  relations  to have   arguments  which  further position  the  primitives  which  they relate. 

IThis will be described in detail in the next chapter. The one-dimensional figures of Narasimhans 

bubble  chamber   tracks  again  cause  no  difficulty   in  this   regard.    Miller and Shaw   also appear 

I 

I 

to be  able  to  get by  such problems  by  using a powerful  and descriptive  set '-»f syntactic oper- 
ators. 

A source of information which so far has been used only sparingly in linguistics and 

character recognition is contextual information between figures. This will be discussed in 
Chapter 6. Suffice it to say, that contextual analysis is a significant source of information 

which has not been considered to any extent by pattern recognition models. Ledley uses 
contextual information implicitly in an aspect of his chromosome analysis, while the remaining 
syntax-directed models do not seem to use any facet of contextual information. In some models 
this may be due to the fact that pictures such as bubble chamber tracks and mathematical 
expressions do not contain a high degree of contextual information. 

In summary, the work of Narasimhan, Ledley. and Miller is similar to SAP in the use of 
a grammar to obtain a syntactic description of the figure. The notion of contiguity plays an 
important role in defining the syntactic relations, though SAP provides additional processing 

to obtain higher level syntactic relations while for the most part they need only be concerned 

with the singular relation of linear juxtaposition. In addition, their use of a grammar to obtain a 
semantic interpretation of the figure differs from the manner in which SAP uses a grammar. 

This is because of the constraints which exist between the constituents of the figures. The 

phrase structure grammar for Narasimhan's bubble chamber tracks and Ledley's chromosomes 

are context free as is Narasimhan's" grammar for the pattern recognition of alphabetic char- 
acters. In Chapter 6 is a description of how the constraints which can exist between either 

constituents of a figure or between figures of a scene may be taken into account by a modified 
context sensitive phrase structure grammar. 

The  next  chapter describes  a language L*  which can  serve  as  a meta  language for des- 
cribing   a   two-dimensional   language   L.   such   as   the   figures   illustrated   in   the  introduction. 

tag^to'- 
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4.   A SYNTAX ORIENTED LANGUAGE L* 

4.1    THE LANGUAGE 

The   set   of  pictures   which   servo   as   input   to   SAP   are   considered  to  compr.se  a two- 

~ M1 Tagc '■;As indicated m ,;,ei,rc '•,hc syntactic ^—"( SA'J —— 
r   ^ 0 .L     a t-d"~' P-ture .,)  to a se, of one-dimensional s.r.ngs of sv.bols 

.l.e''sei LPof "uv  'r1" '   ^  ^"'     ^   ^  ^ *"   *****  ^^ ^ '^ ^ "^'""- of e set L o   two-durens.onal p.ctures defines a language L*.    Hence, the syntactic component 

oi   SA     performs  a  translation of a  two-dimensional  language  to a one-dimensional language 

In  .ranstorm.ng a two-dimensional  language  to a une-dimensional language certain oPer- 

— -- ^ P'ace.   This is because, tor a one-dimensional pattern to compLteltter 
a  two-d.mens.onal  pattern,  the  topological  features  which are  implicit in the two-d 

mine 

m ens tonal 
[TIT, V        er ,,, ,hC One'dime"8ional '—   Thus the one-dimensional strin 
L  , whtch results from the translation of the picture L, describes the topological or syntactic 

features of I        Because the string, of symbols 1.* descnbe the syntax of the p.ctures of I   I * 
may be considered a   metalanguage.    The set of strinas I   * iG ,...n.. .. 
descr.pfion  (SI1>    f H , ei oi s Wings L,    i s c a 11 ed the pars.n g s or s true tura 1 
descr pt.on  (SO.  ol   the  p.cture  i ,.     lh,.s.  SDCL.)   I,*,    The  set of str.ngs L*, is sent to  the 
semant.c component of SAP to receive a semantic interpretation. 

I hi llus   chapter presents  the   syntax of the  language  !,*.    The  specification of the syntax 
0 L     .s  descnbed  in  a   language   ..-.     The  production  rules  which  describe  an algorithm for 
recognizing a member of 1* are the  statements of I **.    Thus   L** is a svn,., ■,■ .   , 
rRlfltit,!. »n ! ♦        i                     .                                           'nus. i,      is a syntactic metalanguage 
relative to L*, and a meta-metalanguage relative to L. 

As   indicated   in   the   previous   two   paragraphs,   the   set   of   str.ngs   1.*    represent.,,. ,1,^ 
structural   description   of  a  picture   I     m.v   h,-   ^h, .        t  f .. '   representln« ^e 

,, .       ,      ' '   ma>   be  llbli""^  ftom  the   syntactic  component  of SAP 1 we  er    ln alte      tlve  ls |or a U8er |o provide SAp  w.th a  ^^^ L ^^ J^ 

en to the semantic component of SAP the structural description of i p.cture without hav.ng 
■he actual p.cture. In terms of p.cture recognition, this provides a means of testing the semantic 

component independent of the syntactic component. ,n terms of picture generation, a user can 

send to the syntactic component of SAP the structural description. This allows the picture 

to be generated without having the actual label of the p.cture. Thus, the syntactic component 
can be tested and operated independent of the semantic component. Of course, the user can 

send is str.ng to both components, generating a p.cture from the descriptive str.ng and obtain- 
mg ö label or identification for the generated picture. 

There is a little doubt that the facility of man machine interaction is an important factor 
in the development and ultimate use of a model such as SAP. For this reason, the syntax of 
L which recognizes the well-formed str.ngs which the user might send to SAP is presented 

■ n th.s chapter in its entirety. The process by which the syntactic component of SAP trans- 
lates a picture L, into a string or parsing L*, will be described in the next chapter 

Formally, the language L* is defined by a phrase structure grammar K2* which is repre- 
sented using the Backus-Naur Form (BNF). The language I.* is a subset of the set of all 

finite strings of symbols from the alphab V K2* is a 6-tuple. (P.S.F.N.R.SS). The alphabet 
A is the union of the sets of terminal symbols P. S, and F. 

The vocabulary of the language I,** is a union of the sets P.S.F. and N. The set P is i 

se,   of  terminal   symbols   which   represent   the   primitive   geometric   symbols  of the   language L. 
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The set S is a set of terminal symbols which are tlu> names of the syntactic relations which can 

occur between the primitive symbols. The set I is a set of functions which are the terminal 

symbols which use the primitives and syntactic relations as arguments. The set N is a set of 

nonterminal or category symbols of L**. The set R is a set of production rules which deter- 

mine how the syntactic strings of L* are to be formed. SS is the goal of the language, a syntac- 
tic  string. 

4.2   THE PRIMITIVES 

It was slated earlier that there is a great deal of freedom in choosing the set of primitives 

ot the language. However, it is obvious that some primitives will represent certain pictorial 

data better than others. Fot the present work, the following set of geometric primitives have 
been   chosen: 

3.   Reclangie 

(( ) 

(!•)• 

(R) 

4.   Isosceles triangle (II); 

5,   Rigln triangle ( IK): 

6.   Right triangle down 

7.   Left triangle (11); 

S.   Left triangle dowi (TLD); 



Thus.   P -  It.  E,   R.  11.  TR. TRD,   I'L.  TLD I.    The  difference between a right triangle and a 

left triangle is the location of the right angle of the triangle. 

The entire set of primitives listed above are completely determined by specifying their 

height, width, and a reference point on the primitive. The circle and ellipse have their center 

as their reference point while the remainder of the primitives have their lower left hand vertex 

as their reference point. The reference point is indicated by a large dot on the primitives 

shown on the previous page. In addition, each primitive of a given type in a syntactic string 

must be numbered to distinguish it from the other primitives of the same type in the syntactic 

string. 

The   general   form   of   a  primitive   is   defined   by   the   syntax  on   this   page.     For example, 

rectangle number 3  with a width of 4 and a height of 10 would be written as, 

R(3.4.1ü) 

A circle  should have  the  same horizontal  and vertical  dimension.    However, it is the horizontal 

dimension that is used to determine the diameter of the   circle. 

name cti 
■ name el lip    ■ 

<name rect 

■'name isos    ■ 

'name rt tri   > 

■ name rt tridown   > 

name 1ft tri    • 

name 1ft tridown > 

<zero  > 

■'number  > 

■ integer   > 

<numtype    ■ 
'numtype    ■ 

horizontal dimension   ^ 

-vertical dimension  > 

''primitive argument ■ 

''circle > 

■ellipse ' 

''rectangle > 

'isosceles triangle > 

right triangle 

' right triangle down > 

''left triangle 

'left triangle down > 

t 

b, 

R 

Tl 

TR 

TRD 

TL 

TLD 

0 

1 i2;3:4!51 6 17 |8|9 

'number- ' 'zero> |-number - integer 

' integer> 

'integer ■ 
integer ■ 

-integer- 

' numtype   /horizontal dimension -, 

<vertical dimension- 

■name cir ■('primitive argument') 

- name ellip > ( <primitive argument ) 

-name rect> ('"primitive argument ) 

-'name isos •(-primitive argument  ) 

• name rt tri   ( - primitive argument  ) 

■ name rt tridown   (primitive argument  ) 

• name Ifl tri ■ (■ primitive argument ■) 

■ name Ifl tridown   (■ primitive afgument  ) 
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A tigiifL1 represented by ;i syntactic siring need have only one primitive in the string 

referenced in order to position all primitives and thus the figure in the field of view. A refer- 

enced primitive has a somewhat different form than that indicated above, the x and y coordinates 

of the reference point being arguments of the primitive. The referenced primitive may be defined, 

as, 

xcoord integer 

ycoord integer■ 
refpi xcoord ■,   ycoord 

reference primitive argumeni /cm   ,   hori/.ontal dimension ■, 

vertical dimension   .■ refpt' 

And thus added to the definition of   rectangle   , etc.,  is. 

name cir   (   reference primitive argument  ) 

name ellip ■( ■reference primitive argumeni   ) 

• name rect   (   reference primitive argument  ) 

name isos ■(   reference primitive argument  ) 

name rl tri   (   reference primitive argumeni   ) 

name rl tridown   (   reference  primitive argument  ) 

name lit Iri •(   reference priti'itive argument  ) 

name 1ft tridown   (    reference primitive argumeni   ) 

rectangle   i   isosceles triangle ■ I 

right triangle        right triangle down   [ 

left triangle • l   left triangle down 

( irele •'   ellipse 

For   example,   a  reference   circle of diameer   15,   and  reference   at (11,47)  would  be  written as. 

C(0,15,15,ll,47) 

circle 

ellipse 

rectangle 

isosceles triangle 

right triangle 

right triangle down 

left triangle 

■ left triangle down 

primitive 

4.3   THE SYNTACTIC RELATIONS 

As in the case of the primitives, the choice of the syntactic relations are also somewhat 

arbitrary. However, also as in the case of the primitives, an optimal or perhaps even feasible 

analysis of the pictorial input necessitates considerable thought to be given as to the choice 

of grammar to be used. The choice of the grammar for a graphic language depends to a large 

extent on the syntactic relations desired. While it is possible that at a later date some formal 

criterion lor choosing a graphic grammar can be presented, the best that can be said for the 

present is that intuitively, it appears that the higher level primitives should be chosen before 

the syntactic relations   if the two choices can be made separately. 

For use in the present research a number of syntactic relations were tried which would 

be meaningful in terms of the defined set of geometric primitives. The final choice of relations 

has been extremely successful while providing a rather simple syntax. The relations turned 

out to be similar to those suggested by Ledley29 in his brief study of the syntactic renre- 

sentation   of picture   expressions.    The   syntactic  relations   are  of the form  *Ri(...),   where   the 

arguments contained within the parentheses will be discussed shortly and i-M 6.   The present 

set of binary relations consists of; 

(i)   X,Y, *R1 (...)     X is on top of Y. 



(ii)   \,Y. *R2 (...)     X is under Y. 

(iii)   X,Y, *R3 (...)     X is to the nghl of Y. 

dv) X.Y. *R4 (...)    X is to the left of V. 

(v)   X.v. *R5 (...)    X is contained within V. 

(vi)   X,Y. *R(i (...)      X contains Y. 

or where   the  primitives,   X  and  Y.  can  be   considered operands  and  the relation  *Ri is an oper- 

ator,   Thus, S     |*R1.*R2,*R3.*R4,*R5,*R6!. 

The  arguments of the relations *R1,  *R2,  *R3, and   *R4  contain the following information. 

(1) The  magnitude  or distance   of the   syntactic  relation  (\1SR).    (e.g.. 

MSR  0 means the primitives are touching....). 

NOTE: MSR is optional if 0. 

(2) The *Ri of the syntactic relation defines the position between 

primitive \ and primitive V is only one dimension (horizontal 

or vertical). To define the relative position between X and Y in 

the other dimensions (called the secondary position) the edges 

of the primitives are used (e.g.. TOP top, BOT bottom, LE=left 

side. Rh right side, IK' horizontal center line. Vf vertical 

center line)' 

NOTE:   Optional if HC or VC. 

The   edges  of  some  of the   geometric primitives  in  use  are defined 

as; 

rop 

BO 

Thus,   the   edge   of  a  triangle  may  be   a   single   point,   the  vertex of 

a triangle. 

(3) The magnitude or distance of the secondary position (MSP) between 

the edges of the primitives and defined by the arguments of the 

syntactic relation must be determined. 

NOTE;   MSP is optional if 0. 

(4) The  secondary position between  X  and   V  defined in the arguments 

of   the   syntactic  relation   must   also   be   given   a   direction,    (e.g., 

HP  up, 1)N  down, LI   left, RT  right)' 

NOTH:       optional   if   (a)   MSP  0.   or,   (b)   if   any   of   the following 

combinations   of  edges  of  the   primitives   and   the   direction  of the 



relative   position   are   used.   (LH.RT);   (RK.LT):   (BOT,UP),  (TOP. 

DN). 

The   syntactic   relations   *R1.  *R2.   *R.V   and   *R4   are   defined on 

the following page. 

Examples in using the syntactic relations are: 

X,Y,*R1(2,RE3LT)   ;   \   is   2   units   above   Y   with   the   right   edge   of  X   3 units to the left of the 

right edge of Y. 

X,Y,*R1(2,RE3) = same as above with options used. 

X.Y.*R3(O.BOT11JP)      X   is   to  the   immediate  right of Y  with  the  bottom  edge  X  1 un    up from 

the bottom edge of Y. 

X,Y,*R3(BOTl)   = same   as above with options used. 

■name sr >:; - *R 

<msr >:; - <.integer^ 

<vedg >::= TOP   BOT   HC 

hedg •:; - LE | RE   VC 

--.msp     ;: = vinteger ■ 

<vdir >::    UP   DN 

hdir ■:;= LT   RT 

■ vrelpos >;;= ■ veug ■   msp   ■ vdir 

■ hre 1 po s ■ h e dg ■ ■ m s p ■   hd i r 

• argvsr >:: = <msr •,<hrelpos ■ 
arghsr   ■;.      -msr ■.   vrelpos- 

vertical relation  1   >:: = - name sr   I (   argvsr -) 

vertical relation 2   ■;:    -name sr   2 (argvsr  ) 

■ horizontal relation 3 name sr   3 (arghsr  ) 

horizontal relation 4   •;:       name sr   4(   arghsr ■) 

■ vertical relation vertical relation 1 

vertical relation 2 

horizontal relation horizontal relation I 

horizontal relation 2 ■ 
•directional relation   •;; = <veftlcal relation   j 

horizontal relation • 

The  arguments of syntactical  relations *RS  und *R6 differ from the other relations in that 

an   additional   argument   or   constraint   is   needed   to   completely   specify   the   contained within 

relationship *R5 and *R6 are defined as follows. 

argcwsr zero   ,■ vrelpos   .   hrelpos   | 

zero   ,   hrelpos   .   vrelpos 

• contained within relation 5   ;;        name sr   5 (   argcwsr   ) 

contained within relation 6 name sr   6(   argcwsr  ) 

contained within relation contained within relation 5 

contained within relation 6 

An example of the use of the *R5 relation is X ,Y.*R5(0,LE I RT,TOP2DN) which says primitive 

X is contained within primitive Y and the left edge of X is 1 unit to Ihe right of the left edge 

of Y and   the top of X is 2 units down from the top of Y. 
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Thus, 
'syntactic relation ■ vertical relation- 

■ horizontal relation^ | 
<conlained within relation • 

The   contained   within   relation   is   actually   a   combination   of  a  horizontal  relation and 

vertical   relation.    Two  arguments  are  required  for the  contained within relation   since  *R5 and 

*R6   convey   no   information   while   in   the   case   of  *R i   for   i«!,..,^   the   i    specifie s a particular 
dimension.    Thus, for the first lour relations, only one directional argument is required.   Though 
it can be replaced by  a combination of a horizontal and a vertical relation, the contained within 

relation   is   available   to   provide   easier   expressability  by   the    user  but more   so   it  is needed to 
maintain   the   normalized   form  of  the   syntactic   string.     This   normalized  form  requires  two con- 
stituents   to  be  related by a  single  binary  relation.    To  use   a horizontal relation and a vertical 
relation   in  the  place  of a  single  contained within relation  would  not conform  to  the normalized 

form.    That  is. the normalized form would be destroyed if two primitives, where one primitive is 
contained  within the other,  would   be related by two binary relations (a horizontal relation and a 

vertical relation) rather than by a single binary relation (a contained within relation). 
The   following   list   represents   the   properties   of   the   syntactic   relations   defined   in this 

chapter; 
(1) The entire set of relations i , irreflexive. That is, a binary relation 

*Ri is irreflexive if there is no X such that (X,X,*Ri) . 
(2) The entire set of relations is unsymmetric. That is, a binary 

relation *Ri is unsymmetric if, for any pair of elements X and Y 
for which (X.Y,*Ri) it is necessarily the case that—(Y,X,*Ri). 
where— is read as not. 

(3) The entire set of relations is transitive. That is, a binary relation 
*Ri is transitive if, for any X,Y. and Z, given (X,Y.*Ri) and 
(Y,Z,*Ri)  implies (X.Z,*Ri). 

Because   the  relations   are   irreflexive,   unsymmetric,   and   transitive  they   are  called proper 

inequality relations. 
If   the   *Ri   previously  defined   is   considered   as   a  binary  operation   rather  than  a binary 

relation the following properties hold. 
(1) The entire set of operations is noncommutative. That is, for any 

X and Y, (X,Y,*Ri) * (Y,X,*Ri). 
(2) The entire set of operations is associative. That is, for any X, 

Y, and Z, (X,Y,*Ri,Z,*Ri) = (X,Y,Z,*Ri,*Ri). 
(3) The entire set of operations is closed. That is, for every choice 

of elements X and Y in the set,   (X,Y,*Ri)   is   also the set. 
The general form of the syntactic relations   is »RUn^nj.nj).    The arguments of the relation have 
been defined by the syntax as: 

(1) nj is an integer providing the magnitude of the relation. 
(2) nj is string of letters and an integer to indicate the secondary 

positioning. 
(3) n3 is also a string of letters and an integer to indicate secondary 

positioning for a contained within relation. The argument is null 
and  hence absent for the horizontal and vertical relations. 

The   syntactic  strings  formed by  the  primitives  and  syntactic relations  have  a normalized 
form of a Reverse Polish ordering. This notation, invented by the Polish philosopher Lukasiewicz 
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in    1921.   has   been   used   extensively   in   compiling   computer   languages   because   it   makes the 

operators  and operands  in a  syntactic  string available  at the precise moment they are required 

in   the   compilation.     Early   Reverse   Polish  requires   that  the   operator   immediately   follow its 

operands,   eliminating  the  need  for  constituent   grouping  by  parentheses.     Thus,   a   segment ol 

the syntactic string can be defined as. 

<S88>;:= vprimitive^-primitive^ <syntactic relation- 

v,sssN -^primitive > vsyntactic relation- 

vprimitive"-vsss - vsyntactic relation^ 

^-sss^ vsssN ^syntactic relation- 

where   <888>   forms   higher  level   constituents   of  the   language.     For  example,   considering the 

syntactic   relations    and   primitives   without   their   arguments,   a   house   could   be  syntactically 

represented   as: 

IIOISI- 

R: 

m.R2.R3, *R3.R1.*R5, *R1 

where the constituent groupings are actually, (T11,((R2.R3,*R3).R1 .*R5).*R1). It should 

be noted that while there is more than one possibility correct parsing for a single graphic input, 

at this time no one parsing appears to provide any more or less information than an> other 

parsing. This is an advantage over natural language analysis, since it does not appear nec- 

essary to obtain all possible parsings of the source language statement (graphic in this case) 

to obtain the   full semantic content of the statement. 

Using   a   linear  scale  of   1   unit  approximately  equal   to  '„".   some   further examples of the 

use of syntactic strings to represent graphic input are; 

TREE 

III 

ritl.(i.l2.).K(l.2.5.).*Rl(().VCÜl.T) 

oi with the use of options. 

II(I,6.!2).R(1.2.5).*R1  since the 

vertical center lines of the two 

primitives are aligned. 
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i \( loin 

ii iK       \\.:K      ii v R4 

R: 

TL(l,3,3),TL(2,3.3),*B4(l,BOTOUP),TL(3)3,3),*R4(l,BOTOUP),R(3,2,6),R(4,2)6), 
*R4(2,BOTOUP),R(2,8.4),*R1(0,LE1RT),*R4(1,BOTOUP),R(1122,7)1*R1(0!LE2RT) 

or i/ith the use of options. 
Tl,(l,3,3),TL(2,3,3),*R4{l,BOT),TL(3,3,3)i*R4(l,BOT).R(3,2,6),R(4,2,6),*R4(2,BOT), 

R(2.8,4),*R1(LE1),*R4(1,B0T).R(1.22,7),*R1(LE2) 
In the next chapter a procedure is presented for testing the well-formedness of a syntactic 

string in Reverse Polish form. 

4.4 THE SYNTACTIC FUNCTIONS 

Some other relations of the graphic language might best be considered as unary and 

binary functions which operate on segments of the syntactic string.   Some of these are; 

HORIZONTAL OR VERTICAL SYMMETRY: 
This is unary function which operates on a segment of a syntactic string to generate its 

corresponding symmetrical syntactic string. The horizontal symmetry can be either right or 

left and the  vertical  symmetry  can be  up or down.    The  symmetry  functions may be defined as. 

<hsym •;:= *HSYM 

<vsym>;;= *VSYM 

■symf   ■:;= - hsym ■ - hdir ■   -vsym-vdir 

For   example,   the   building   drawn   below   can   be   represented   by   the   following syntactic 

string: 

K4 

R5 
R(l,2.2),R(2,4,6).*R5(TOPl), 

R(3,8,4),*R4(BOT).R(4,2,2). 

R(5.4,6).*R5(TOPl),*R4(BOT) 
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using the horizontal symmetry function,   the syntactic string becomes, 

R(1.2.2),R(2,4,6),*R5(TOPl),R(3,4.4),*R4(BÜT),*HSYMR. 
To   produce    the   remainder   of   the   syntactic   string   internally,   the   horizontal   symmetry 

function performs the following transformations on the syntactic relations upon which it operates: 

*R1 transforms to *R1 

*R2 

*R4 

*R3 

*R5 
*R6 

TOP transforms to TOP 
*R2 
*R3 

*R4 
*R5 
*R6 

BOT 

LE 
RH 

HC 

VC 

-> 
-> 

BOT 
RK 

LE 
11C 

VC 

The  vertical  symmetry function,  when operating upon a  syntactic  string,  performs the following 
tran sformations: 

*R 1  transforms to *R2 TOP transforms to BOT 
*R2 

*R3 

*R4 

*R5 

*R6 

*R1 
*R3 
♦R4 
*R5 

*R6 

BOT 
LE 
RH 

lie 
VC 

TOP 
LE 
RE 
IK 
VC 

REPEAT SEGMENT; 

This is a unary function which operates on a segment of a syntactic string to generate 

a replication of the segment. The first numeric value (MBR) indicates the magnitude of the 
distance between the replications where 0 is optional and indicates touching. As defined 

earlier (HD1R) and (VDIR) are the direction in which the replications are to be taken, used in 

this case along the horizontal or vertical line. The second numeric value (NUR) indicates 
the number of replications to be made. 

The repeat function may be defined as. 
rp    ;:= *RP 

''mbr  '.:    ■'integer 
nur   •::=    integer 

• rpf   •::    • rp-- <mbr><hdit> ^nur- j- rp •   mbr     vdir     nur 

Fo r example. 

Rl 
R: 

RdC ,*RP1RT2<*RPU)N2.R(2,14,I4),*R5 
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ENLAROE OR REDUCE SEGMENT: 
This is  a unary function which operates on a  segment of a syntactic  string to regenerate 

the syntactic string with its various measurements changed by a factor indicated. 

This function may be defined as. 

•els :■; ;    *ELS 

•;rds  >: ;= *RDS 

elrdf   •; > <els> <num ■ <rds> • num 

For example. 

R(1.1,1),R(2,3,3),*R5,*ELS2 

(£] become s 

R(1,:.2).R(2.6.6),*R5 

DEFINE SEGMENT 
This is a binary function which allows a dummy variable, DEFi (U0....) to be used in 

place of a segment of the syntactic string. The segment of the syntactic string which DEFi 

represents is defined as that portion of the string which follows DEFi until the first *DEFS is 

found. The integer i names the particular segment of the syntactic string which is being 

represented. 

The define function may be defined as. 

defs ♦DEFS 

defi *DEF -integer ■ 
Jefsf   ■ ;«=    defi ><.., ■ -'defs 

ROTATE ABOUT REFERENCE POINT: 

This is a unary function which is used to rotate primitives clockwise from the vertical 

around their reference point. The numeric value of the function indicates the number of degrees 

to rotate.   The rotate function may be defined as. 

'rote 

crotef 
For example, 

R(l,4,8),*ROTE45 

*ROI E 

< rote" -integer ■ 

^ZL 
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R7 

R3 

Rl 

R2 

R4 

R6 R5 

I 
I 
I 

R(1.4.4),R(2.4,4),*R4.R(3,4,4),R(4,4,4),*R4.*Rl.R(7.8.8),*R3(BOT) 
R(6,8.6),R(5,8,8).*R4(BOT).*Rl(LH) 
or 

DEF1,R(I,4,4),*RPRT1.*RPDN1,*DEFS.DEF1.*ELS2,*R5(T0P,RE) 

Figure 4.   An Example of a Complex Figure Defined by Syntactic Functions 
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A final example of the syntactic functions in Figure 4 indicates some of the arbitrarily 

complex figures which can be created. While many more functions can be readily created, for 

those functions presented in this chapter, the syntactic function can be defined as. 

■unary syntactic function •::; <8yrnf^ | <ipf> 

binarv syntactic function >;;= <defsf> 

lrdf> rotef 

Thus,  to the definition of the segment of the syntactic string must be added. 

vsss ■■amarv syntactic function-   DHJ^i <sss   DEIS 

The   goal   of  the   language   is   syntactic   strings.     Any   segment  of a   syntactic   string is also a 

syntactic  string.     Those  segments of the  syntactic  string which  are  able  to receive a semantic 

interpretation  are  considered meaningful.    Other syntactic  strings  are  anomalous.    But in any 

case, the  syntactic  string, as long as  it is well-formed Reverse Polish string, can be displayed 

graphically.   Thus. 

<8 s> :: ~ < s s s • 

The syntactic relations defined by the previous syntax arc actually redundant. That is, 

only *R1! *R3 and *R5 are really needed to have the same descriptive capabilities as all six 

relations. Thus. SAP normalizes the syntactic string, by converting, for example, the *R2 

to *R1 with the necessary manipulations of the syntactic string. Similarly, the functions are 

removed from the siring before the string is processed, the functions being replaced by the 

corresponding segment of the syntactic string. 

The normalized syntactic string will also be the result of the syntactic component of 

SAP for a given picture. The syntactic string is a structural description of the picture and once 

obtained, is operated upon by the semantic component to apply a semantic interpretation to it. 

If a semantic interpretation can be applied to the structural description then SAP has recognized 

the pictorial  input. 

The syntactic string is produced in SAP by its syntactic component. This component 

and the analyses it uses are described in the   next chapter. 
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5.   THE SYNTACTIC COMPONENT OF SAP 

5.1 AN OUTLINE OF THE SYNTACTIC COMPONENT 

The syntactic component operates on a two-dimensional picture !., to provide a set of 

structural descriptions 1.*,. The structural descriptions are the same one dimensional strings 

of symbols described in the previous chapter. Thus, the syntactic component obtains a set of 

syntactic strings, each represent'ag the topological structure of a picture instead of a user 

presenting SAP with a syntactic string representing the picture's structure. In other words, 

the syntactic component of SAP is a translator translating sentences (pictures) of a two- 

dimensional language L to a one-dimensional language L*. 

(liven a picture L,, a structural description L*,, of L(  is  a representation of the primitives 

and   the   syntactic   relations   between   the   primitive.'   which   comprise   1...     This   description will 

be  obtained   by   the   syntactic   component  first   as   an   intermediate   tree   structure   and  then  as a 

linear   string.      The   tree   structure   is   actually   a   pedogogical   device   to   aid   in   illustrating and 

conceptional understanding of the syntactic analysis. 

To obtain the structural description the syntactic component is composed of a lexicon 

and two subcomponents, a segmenting subcomponent and a parsing subcomponent. The seg- 

menting subcomponent forms lines from points, higher level primitives such as rectangles and 

triangles from the lines, and a set of 3-tuples called 'he triplet set from the higher level 

primitives (to be called uist primitives hereafter) and the syntactic relations between them. 

The parsing subcomponent tests the set of 3-tuples ior completeness, partially orders the 

triplet set. and then tranv.orms the triplet set first into a tree structure and then into a Reverse 

Polish string to obtain the final form of the structural description of the pictorial data. The 

lexicon defines the attnbutes of the primitives and the syntactic relations which can exist 

between   the   primitives.      A   Mow   diagram   of  the   syntactic   component  is   shown   in   Figure 5. 

5.2 Tf.E SEGMENTING SUBCOMPONENT 

The segmenting subcomponent must first determine and define the lines which compose 

the pictorial data. The lines are then used to form higher level constituents. To obtain the 

linei and higher level constituents a grammar Kl* is used. Kl* is a modified context sensitive 

phrase structure grammar which is defined as the 4-tuple (T1 ,N1 ,R1 ,SS), The setTl is the 

set of terminal symbols of Kl*. By the nature of the data, the terminal symbols are discrete 

points which do not explicitly occur in the grammar. The set Nl is the set of nontermin- 

al symbols. The set Rl is the set of production rules which form higher level constituents 

from the terminal symbols.   The goal of the grammar is SS. the syntactic string. 

In addition to the grammar Kl*. the segmenting subcomponent uses transformation rules 

on the line segments formed by Kl*. The transformation rules will form additional line segments 

or concatenate  line   segments  already formed  to allow   the parsing of the figure  to be obtained. 

In order to obtain the line segments from the discrete points it is necessary to first 

label the points.   The points are labeled by the directional axes as shown on Page 35. 
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To label the points the axes are moved from point to point, where at each point all neighboring 

points are labeled according to the axes. Itns. the labeled points indicate their position 

relative to their neighboring points. Any number of directional axes may be used, differenti- 

ating between horizontal, vertical, and various diagonal type lines. Note that a single point 

may receive multiple labels. 

Once   the   points   have   been   labeled,   the   line   segments   are   formed  from   the following 

productions. 

<LH(x,x) PH(X) 

l.H(y,x) <PH{y) 1.„(;-..x)         l.H(y.z)       PH(x) 

Lv(x.x) Pv(x)> 

Lv(y,x)- l\(y)   • l-vl^.x)        l.v(y.7)       l\(x) 

l.DR(x.x)     : PDR(X) 

l.0R(v.x) •'opfv) l.DR(/.x)           I.DR(>'z)        ''D R(X) 

LDL(x.x) I'DL^' 

l.DL(y.x)       : -pDL»y> l,DL(Z.x)        l.DL(y,/)      PDL(x) 

F;or example, a point x labeled horizontal, I'^x), forms a horizontal line l.H(x.x) whose end- 

points are x, i.e., a line composed of one point is formed. To extend this line additional 

points with the same directional label as the line are concatenated to the already existing line. 

Concatenating a horizontal point y, Pu(y), to tb-^ left side of a horizontal line bounded by points 

z   and   x,   LH(z.,x).   forms   a   horizontal   line   bounded   by   points   y   and   x, 1,   (y.x). 

When a new line (called an actual lint') is started because of a change in direction in 

the points, the last point of the line just generated is called a vertex point. Thus, the vertices 

are end points of lines and indicate juxtaposition points between lines. Vertex points always 

have multiple labels. 

Once the lines of the figure have been determined, the input figure can he defined as a 

graph composed of a set V |v,| of points in B* and a set of straight lines satisfying the 

following  conditions: 
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1. Everj  line contains precisely two points of V. and these agree with its end points. 

2. The lines have no common points, except for points of V. 

1 he vertices V, and vk which are the end points of a line 1 are said to he incident with the 

line. This ma> be written as I {/) (v, & vk) winch is read as / joins v, and \ k, where the symbol 

(v. Si vk) denotes  an unordered pair of elements of v. 

Ihe vertices are placed in a data base where the coordinates of each are stored as attri- 

butes of the vertex. This information will be used to determine the length of the line. Another 

attribute of the vertex v which is continually updated in the data base is its degree (^(v). 

which is the number of lines incident with v, a separate count being kept for acfua/lines. 

Each line is assigned two arguments, the vertices which bound the line. The arguments are 
defined as follows: 

d)     Foi   l,H  (VJ.VI)   the   first   argument   is   the   left   hand   vertex  which  bounds 
the horizontal line. 

(ii)      For   Lv   (VJ.VI)   the   first argument   is   the   lower   vertex   which   bounds   the 
vertical   line. 

(in) For L.DR (vpV,) or LDL (V|,V|) the first argument is the left hand vertex 

which bounds the diagonal line. 

Since the semantic component requires the structural description to be composed of higher 

level primitives than lines, additional rules must be added to the grammar. This would not 

necessarily be the case if the pictorial data were one-dimensional figures. For the pictorial 

data being considered, the higher level primitives are the triangles and rectangles described in 

the previous chapter. The input figure will be parsed into the higher level primitives by combining 

the lines determined by Kl*.    For example, the figure 

can be readily parsed into three rectangles and a triangle. 

However, a difficulty in parsing the pictorial data arises when the higher level primitives 

required by the semantic component are only implicitly contained in the data. This occurs if. 

for example, the primitives are two-dimensional and the common boundary between two primitives 

is removed. In this case the segmenting subcomponent must add lines to the figure to make the 

primitives explicit. Because there may be a choice as to which lines to add to the figure, more 

than one configuration of the figure may be possible. 

For example, assuming that the structural description 

is to have rectangles as its primitives, consider the 

figure on the right: 
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There are lour different configurations for the figure.   They arc 

• • • • 

where the dotted lines are the added lines. To produce these configurations the following 
transformation rules are used. These rules are not considered part of the grammar Kl* because 
of the nature of their operation. The brackets on the right hand side indicate a choice in the 
lines to be added and the numbers on the right hand side of the transformalion rule indicates 

that the corresponding elements on the left hand side of the rule are carried over. 

LH( vvv KLylv-.v,,) 
' \ 

(1),(2) . L'H^.VJ 

(IKO.LVv^v,) I 

LH(vi.vi).l.v(vi,vk) 

(1) , (2) . L'M(V«,V,) (    '"   ■   UJ   .   I-   H,Vm-V    | 

(   (1) .12) . I- v(vm.v|)   ) 

I 
I 
i 

The added lines (called artificial lines) are designated by a prime so that the parsing sub- 

component will be able to indicate in the structural description that the lines were added by the 

segmenting   subcomponent. 
Note that when artificial lines are added new vertices may be created. The Appendix 

10.2 contains the entire set of rules necessary to add artificial lines to the pictorial data being 

considered. Each use of an operation rule adds one artificial line to the figure. All four 

configurations of the sample figure would be operated on by the parsing subcomponent, producing 

structural descriptions (parsings) to be sent to the semantic component. It is possible that 

all of the parsings will receive the same semantic interpretation or that some of the parsings 

cause the figure to be considered anomalous, due to limitations in the semantic component, 

and  hence   assigned no semantic interpretation. 

Once the adding of artificial lines to the pictorial data is complete, it is necessary to 

explicitly define the higher level primitives which comprise the data. This is done by combining 

the lines into the higher level constituents such as triangles and rectangles by the following 

steps. 
Artificial lines which were added by the segmenting subcomponent are 

concatenated with actual lines of the figure. Two lines are considered 

for concatenation if an artificial line has the same direction as an actual 

line and they have a common end point. 
The   artificial   and   actual   lines   are   concatenated  if their  common vertex 

v has a degree, ^(V)-T3, 

(3)     If 5(v) = 4, the artificial and actual lines cannot be concatenated. 

If  two  lines  are  concatenated,  the   two  lines  before  the   concatenation  are  not lost since they 

mav   also  be  needed   in  the   formation  of higher  level   constituents.     The   concatenated  line is 

(I) 

(2) 
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primed.     This   nun   be   written   as   shown   below   where,   tor   the  first  rule,   the new line formed 

is   L^tv,.^). 

L,(vl.v|).L1(v|,vl<),Lm(v).vn)" 

L,(vl,v|),L1(v|.vk).Lm(vn.v|)- 

-►l. l(V, .),(3) i,vi-vk' 

♦ LVvi.Vk).^) 

Once all possible line concatenations are made, a grammar will form the higher level primitives 

required by the semantic component. The grammar rules which form these constituents are 

of the form. 

-.X(w.h.V)     •:;-   '•L<')m(V1,Vi)-vL(')n(vk,V|)-...   'H 

The rule states that constituent of type X may be formed from the juxtaposed lines in the 

context of restriction 0.   The arguments   of constituent \ are defined as: 

(i)       w   is   a  number  assigned   to  each  constituent  identifying  that constituent 

from other constituents of the same type: 

(ii)      h is the horizontal dimension of the constituent; 

dii)      v is   the vertical dimension of the constituent. 

The primes enclosed in parentheses indicate they are optional and thus a line may be 

artificial, actual, or a concatenation of the two. The restriction 0 refers to an entry in the 

lexicon which contains additional restrictions for forming the constituent and defines the 

attributes of the constituent being formed. The lexicon entry indicates how the horizontal 

and vertical dimensions of the constituent are to be determined and other attributes which will 

be required to complete the structural description of the figure. When the constituent is formed, 

its entry is made in the data base and the vertices which are the arguments of the lines 

forming the constituent are listed   as an attribute of the constituent. 

Examples from  the  set of production rules to form  the higher level primitive constituents 

required   lor   the   pictorial   data  being   considered   are   shown   in   F-'igure   6.     The   listing of the 

grammar   Kl*   in   Appendix   10.2   contains   the   complete   set   of  rules   for   all   eight primitives 

indicated in Chapter 4. 

In contrast to juxtaposed elements in linguistics, the above rules do not require the 

juxtaposed elements to be ordered. The arguments of the lines are ordered and thus eliminate 

any possible ambiguity between figures. For example, assume the following rule where the 

arguments are not considered ordered (TS stands for scalene triangle) 

•TStw.h.v)    : 

so either of the two figures may be produced 

LDR(vi-vi> I. OR (v.  ,V:)  • ' Lu(v,,V|,) 

J 
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.R(w.h,v) •; = <LN(V|,V|)><Lv(V|,vk)   ■ l,H(vk.vl) 

- Lyiv^v,) •   RECTANGLE 

I 

i 

TKw.h.v)     ::- 'L^VV      Ul^VV- 

LDL(vk,vi)      tSOiCELES TRIANGLE 

C(w,h,v) >:> <LH(v|1V|)><LD|.(v1,V|,)><Lv(V|,V|t) • 

<LDR(v
mW     ■'LH<Vn-Vn,)'LDL<vpVn) 

Lv(vp.vr)     LDR^,^,)-/ CIRCl.K 

Figure 6.   Examples of Production Rules to Form Higher Level Primitives 
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But it ihe arguments of the lines arc considered ordered and defined as earlier, only the left hand 

figure is possible. 

Having formed all the higher level primitives from the actual and artificial lines, in order 

to provide a structural description of the pictorial data, a set of 3-tUples are created, composed 

of pairs of contiguous primitives and their respective syntactic relation. The primitives are 

paired by finding a subset of the vertices of one primitive to also be a subset of the vertices 

of a second primitive, The correct syntactic relation is determined by their definitions in the 
lexicon. 

ihe   general   form   of   a   lexicon   entry   for  either   a   primitive   or  a   syntactic   relation is of 
the fol low ing form. 

NAME;    form 

Requirements;    F(]    ) Ol   (!(]  ) 

Assignments;     m,      j KUJ OAVd,) 
i 

n, k 
Ihe   entry   NAME   can   be   either   the   name   of   a   primitive  or   a   syntactic   relation.    The portion 

labeled  Requirements  lists  any  restrictions  which  SAP  must  consider.     The  functions   F  and   (1 

represent   general   functions   such   as  length   of a   line   segment  and O».   is an arithmetic relation 

or a  relation   such  as contiguous,  "EB",    The  portion  labeled  Assignments  assigns  to variable 

ill;   either   (i)   a  numeric   value   which   results   from   the   calculation   of the   indicated   expression 

where   K   and  H   are  functions   which obtain  the   \  and  y  coordinates   of the arguments lm  and I, 

which  are   line  segments  or   vertices,   or(ii)  a  label  nk which  indicates the  directional value of 

an  argument  of a  syntactic relation,     ihe   lexicon entries  for the  eight primitives  and the three 

basic   syntactic  relations are listed  in  Appendix    4.2.    An  example  of the  entry  for the relation 

on /u;> oj is shown below, 

ON TOP OF:    X. Y.*R Kn, .n^,^^) 
Requirement ;    X(BOT) fflY(TOP) 

Assignments :    ni      () 

n2      LF. 

if XCOORD(XLE)     XCOORl)(YLE) 
then. 

"3      XCOORD(\LE) - XCOORD(YLE) 
n4      RT 

if XCOORD(XLE) ,  XCOORD(YLE) 
then. 

nj - XCOORD(YLE) - XCOORD(XLE) 

n4 - LT 

The   3-tuples   constitute   a   set  of  triplets.   T       It,}.     Thus   triplets   are   of the form, t, = 

'Pk'Pl^m'  where  pk   and p,  are  members  of the   set  P of primitives  and sm  is a member of the 

set   S   of   syntactic   relations,   and   where   pk   and   p,   are   contiguous   primitives,   and   sm  is the 

syntactic   relation between   them.     The  definitions  of the   syntactic  relations  may  be  found   in 

Chapter   4.     While   the   syntactic   language   in  Chapter  4 defined   six   syntactic   relations, only 
three of them are actually necessary, 

*R1   - on top of 

*R3     to the left of 

*R5 = is contained within 
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the   remaining  throe   being  just  the   inverse   of  the   preceding  three.     To  normalize   the graphic 

data   and   reduce   the   number   of   different   structural   descriptions    which   must   be   considered, 

only   the   above   three   syntactic  relations   are   used  internally  by  SAP.     If a  user provides SAP 

with a syntactic siring using relations other than the three indicated, the relations are converted 

to tiie   three above relations by easily manipulating the  syntactic string. 

Triplets  may   also be  of the   form  (X.O.O).     Tins  occurs  if the  primitive  X occurs in the 

figure   but   is   not   contiguous   to   any   other   primitive   in   the  figure.      Triplet:,   of this   and other 

forms   require   various   tests   and  transformations   to  be  performed  on  the   triplet  set.     Once all 

possible triplets have been formed, the triplet  set T is  sent to the parsing subcomponentswhere 

it is checked for completeness  and   then transformed into a  structural description of the figure, 

5.3   THE PARSING SUBCOMPONENT 

5.3.1    COMPLETENESS TESTS 

Once   the   triplet   set   has   been   formed   from   all   pairs   of  contiguous   primitives   and   the 

syntactic   relations   between   them,   the   triplet   set   is   tested   by   the   parsing   subcomponent for 

completeness.     To   facilitate   explaining  the   completeness   tests   the   triplet  set  will   be repre- 

sented   by   a   directed   graph.     Each   edge   of   the   graph  has   associated   with   it an orientation 

resulting from the end points  of each edge which constitute an ordered pair of vertices. 

The   directed  graph D   is  a  triple  (P,S,A)  consisting of a nonempty  set  P.  a set S which 

is disjoint  from  P,  and   a mapping A of S into  P X  P.    P X P is the cartesian product of a set 

P with itself forming all ordered pairs (pj.p.) such that p,£P and p.CP. 

(i)       The elements of P arc  called vertices   and   represent the primitives which 

are contained in the triplets, 

(ii)      The  elements of S are  called directed edges  and represent the syntactic 

relations which are contained in the triplets, 

(iii)      A is called  the direct incidence mapping associated with D. 

If s  C S and A(s)  = (p^P:) then the directed edge  is said to have pi as its initial vertex 

and p. as its terminal vertex or ssa. (pi-Pj). 

Thus,   the   directed  graph   is   isomorphic   to  the  triplet  set.     For example,  the  triplet set 

(«,0, + Ri,), (^,y,*Ri2), (/:i,S,*Ri3). (y,S,*Ri4) would form the directed graph. 

It is interesting to note that the directed graph representing the triplet set could be 

obtained directly from the two-dimensional picture serving as input. As indicated in Chapter 

Two,  the figure itself may be considered a geometric graph.   A modified  dual of this geometric 
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graph   is   the  desired directed  graph representing  the  triplet  set.    To obtain  the modified dual; 

(i) Consider the geometric graph (figure) with regions R.Chl n).    Associate 

a  point p.   with each  region  R.   by  choosing one of the  points  within the 

region.    If two regions R.   and   R|   are  adjacent, join p,   and p    by an edge 

PiPj   which   intersects   the   common  boundary of Rl   and   R,   only  once and 

has no point in common with any other boundary of the graph, 

(ii' No point p. is   assigned  to the region surrounding the graph. 

(111) The   edge   pjpi   receives   a  direction   and    label   which   corresponds   to  the 

syntactic relation ordering between regions R. and R-. 

This   procedure   yields   a  new   graph   D' with   vertices  p, pn.     it   is   called   a modified dual 

graph of D. 

For example, consider the picture below. 

The point p. of region Ri is indicated by the  dot and   labeled by the greek letter shown. Connect- 

ing the dots by the indicated dotted lines and giving a direction and label to the corresponding 

connections pro   ides the following the directed  graph. 

*Ri 

*Ri. 

'Ri. 
-♦-  ) 

I 
I 

I 

While   the   completeness   tests   are   presented   in  terms of  the   directed   graph   to provide 

ease   of explanation,   the  tests   are   also  described  in   terms  of the   transformation  rules which 

actually operate on the triplet set.   The general transformation rule is of the form, Tl »T2, 

where Tl and T2 are strings of triplets of the form («j./S, *Rj, ),(a«<j8ä*Rjä),..,(a   .ß  ,*Rj ). 

Tl is a subset of the original triplet set T and T2 is the subset Tl after it has been transformed. 

As indicated in the previous section, triplets may also be of the form (a,0,0) where ß. and *Ri. 

are   zero.     As   a   shorthand  notation,  T2  may   hive  members  of its   string of the form (n) which 

indicates that the nth  triplet on the  left hand  siue of the rule, Tl, should be transferred to the 
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right hand side. T2, unmodified. Triplets may be removed from, added to, or modified in the 

triplet set. The order of the triplets in Tl and T2 is arbitrary, though it will be shown in a 

later section that it is necessary to partially order the triplet set. The arguments of the primitives 

and syntactic relations which were described in the last chapter are not included in the examples 

of this chapter as a matter of convenience. 

There   are   three   completeness   tests   which  are  performed on   the  triplet  set.     These tests 

are. 

1. The test for isolated primitives. An isolated primitive occurs when a 

primitive is contained within another primitive in the figure and the 

former primitive is not contiguous to any  primitives. 

2. The test for missing relations. A missing relation occurs when two 

primitives,which are not contiguous, are both syntactically related to 

a third primitive by the same type of relation. 

3. The test for inconsistent relations. An inconsistent relation occurs 

when two contiguous primitives are syntactically related when they 

should not be. 

The completeness tests will now be described in detail. 

1. The test for isolated primitives is essentially a check to determine whether the undirected 

graph 0 which corresponds to the directed graph D is connected. The test for connectedness 

of the undirected graph may be defined as follows; 

A   finite   sequence   s^sz sn   of  edges   of the   corresponding undirected 
graph constitutes an edge progression of length N If there exists an 
appropriate sequence of n i   1 vertices P0.pi....pn such that 8|   (p, .) &P|) 
for i   -   1,2 n.    The  set of edges,  without regard to sequencing, is said 
to constitute a chain.    Finally,  a  graph  is  said to be connected if every 
pair  of distinct  vertices  are joined  by  at  least one  chain.    Other graphs 
are  said to be disconnected.41 

The  graph  0  is  not connected  if its  edges  can  be  partitioned  into  two  subsets S,  and S2  such 

that   both   end  points  of every   edge   are   in   the   same   subset.     There are   two cases of isolated 

primitives   to  be   considered,  depending  on  whether  P,   and  or  Pj,   the   subsets  resulting from 

the   partitioning   of   the   set  of   vertices,   consists   of   an   isolated   vertex  Pj   th Ht   is,S(p,)      0. 

(i).     The   first  case  of an   isolated  primitive   arises   when   l,]   or  F-^   consists of a single 

vertex. Hence, either S, or S2 is null. This may occur in a figure when a primitive \ is contained 

within  a  primitive   Z,  but primitive   X   is not  contiguous  to primitive  Z  or any other primitives 

which may be within Z.   For example. 
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The undirected graph is. 

W 

*R5 

'R5 

To form a connected graph the vertex X must be connected by an edge, representing a syntactic 

relation, to either Z or W. Since in the general case there may be several primitives contained 
within L to which X can be syntactically related, X will be related to Z. the terminal point of 
the contained within relation.   The resulting undirected and directed graphs are. 

*R5 *R5 
Z      X z •• x 

*R5 and *R5 

W W 

The   triplet   from  which   the   isolated   primitive   results   is  of the  form  (y.O.O).     The triplet 

set   for  the   example   is  (W,Z.*R5),  (X,0.0)   and   it  is   transformed  to  (W ■ Z. *R5),(X,Z,*R5).   The 

transformation rule for this type of isolated primitives is 
(a.jS,*R5), (y.O.O) *►(!), (y.ß.*R5) 

The triplets of the left are members of the original triplet set. The triplets on the right are the 

result of a transformation on the original triplets, the (1) indicating that the first triplet remains 

the same while the second  triplet is transformed as indicated. 
The   first  case  of an  isolated  primitive   with   P,   or  P2   consisting of a  single vertex may 

also occur  when  a primitive  X  is   contained  within  a primitive   Z,  and while  X is contiguous   to 
at  least one  primitive  Y  which  is  contained within  Z,  there  are no primitives  contiguous to Z. 

For example. 

The corresponding directed and undirected graphs are, 
Z Z 

and 

"•►Y 

*R2 *R2 
To form  a  connected graph the  vertex  Z  is  connected by an edge to one of the primitives 

contained   within   Z,   the  choice  being   arbitrary.     The  resulting undifected  and directed graphs 
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*R5 

I 

*R2 *R2 

The   triplet  from   which  the  isolated  primitive  results  is  again of the  form.   () .0.0).    The triplet 

set   fo;   the   example   is  (Z,0,0)   (X,Y,*R2)   and   it  is   transformed  to  (X.Z.*R5).(X ,Y .*R2).   The 
transformation rule for this type of isolated primitive is. 

(«.rt,*Ri). (y.O.O)  ►    (1). {a.y.*R5) 

In  the  actual  implementation,  the choice  as  to  which  of the  two transformation to use is 

made by  checking the  coordinates of the  vertices of the primitives.    The vertices are attributes 
of the primitives though they have not been indicated here. 

The occurrence where both P, and Pj consist of a single vertex can be easily handled. 
This arises when primitive X is contained within primitive Z, and both X and Z are contiguous 
to no primitives.    For example. 

Z 

The   directed and undirected graphs are, 
Z X 

which may be connected to form, 

Z »X and. Z X 

*R5 *Rb 

The   triplet   set   for   the   example   is   of  the   form   (Z.0,0)  tX.O.O)   and   is   transformed to 
(X,Z,*R5).   The  transformation rule for this type of isolated   primitive is. 

(a.0,0). (jS.O.O)- ->(/3, 'R5) 
(ii).     The   second  case of an   isolated  primitive   arises  when  the partitioning of the uncon- 

nected   graph  G  provides   two  subsets  P,   and   P2.   both of which  contain  more  than one  vertex. 
This occurs  in a   figure  when  a primitive  X  is   contiguous  to at least one primitive Y, and while 
both   X   and   Y   are   contained   within   a  primitive   Z,   neither  X  nor  Y   is contiguous to Z or any 
other primitives which are contained within Z.   For example, 

\ 
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*R? 

*R2 

X   ► Y 

W 

to which is added a relation between 7. and either of the primitives not connected to Z. 

The  triplet  set lor the example is of the  form (W.Z.^RS), (X,Y.*R2) and is transformed to 

(W,Z.*R5). (X.Y.*R2) (X,Z.*R5K   The transformation rule is. 

(a,ß,*R5), (y.5.*Ri) ► (1), (2). (y(/3,*R5) 

As with the previous transformation rules, their application is in part determined by checking 

the attributes of the primitives. 

2. The test for missing relations is to determine when two noncontiguous primitives should be 

related. The addition of these relations allows further parsings of the figure to be performed, 

the adding of relations being the inclusion of more triplets in the triplet set. 

An example of a figure which results in a missing relation is. 

The triplet set obtainable from the contiguous primitives is. 

(X,Y,*R1), (\,Z.*R1) 

The   directed graph formed from these triplets is, 

X 

*R1 'R\ 

Y Z 

It   will   be   shown   in   the   next   section   that   two   parsings   may  be  obtained  from the triplet set. 

A  third  relation  can  be  represented  between   Y  and   Z.    The  triplet representing this relation is 

(Y.Z.*R2)  and  by  the   addition of this  triplet  to  the  triplet  set four more  parsings   of the figure 

can be obtained.   After the third relation is added the directed graph is, 

X 

•Rl *R1 

*R: 
The missing relation test searches the directed graph for the presence of two or more directed 

edges which have the same syntactic label and the same initial or terminal vertex. A relation 

is considered missing if the noncommon vertices of the directed edges just described are not 

connected by a path which does not contain the common vertex. There are two types of cases 

in which a missing relation may arise, depending on whether the common vertex is an initial 

or terminal vertex. 



I 
I 
i 
I 
I 
I 
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I 
I 
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If the directed edges with the same syntactic label have the same initial vertex. 

the   missing   relation   is   between ß   and  y  where   *Ri   cannot  be  a  contained within relation.   It 
will  be  pointed out in  the  discussion on  the   inconsistency  test that *Rj  also cannot be a con 
tamed within relation, and of course i  •  j.   The transformation rule which operates on the triplet 
set for the situation of the directed edges having the same initial vertex is, 

(a.^.*Ri), («,y,*Ri) »(1), (2), Q8,y,*Rj) 
The directed graph for the directed edges having the same terminal node is, 

a ß 

*Ri *Ri 

where  again   there  is  a missing  relation  between u  and ß.    An  example of a figure with such a 
missing relation is. 

which has the directed graph. 

Rl 'R\ 

As  pointed  out  earlier,  by  adding  a  triplet  which  relates   X   and  Y  to  the triplet set will allow 
additional parsings of the figure if *R1 is not a contained within relation. 

However, if *R1 is a contained within relation it is mandatory to determine the missing 
relation between X and Y. Because primitives related to Z by a contained within relation are 
are not related in the triplet set it will not be possible to parse the figure. The absence of 
the syntactic relation between X and Y from the triplet set 
may be because either X or Y was an isolated primitive which was 
placed in a triplet to remove a case of incompleteness. For 
example, 
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The graph for the preceding figure is, 

*R5 

Syntactically relating X and Y results in the graph, 
*R2 

X ^Y 

*R5 'R5 

The transformation rule which operates on the triplet set for the situation of the directed edges 
having the same terminal vertex is, 

(a,ß*m, (y,/3,*Ri) »(1), (2), (a.) ,*R.i),     where i/ j. 

The problem of obtaining all possible syntactic relations which can occur between primitives 
contained within a given primitive is not solved by this formulation. Though it is only a minor 

extension of the above, and the additional triplets will provide more parsings, it is not clear 
at this point that all such possible parsings   are necessary or even desired. 

}. The test for what may be considered inconsistent relationships must also be applied to the 

triplet set before any attempt is made to parse the figure. The relations are really not incon- 

sistent but would appear so to the parsing algorithm when an attempt is made to use them and 
so they must be removed from the triplet set. 

(i) The first case of an inconsistent relationship between a primitive X and a primitive Y can 
be determined on the directed graph of the figure by a vertex X which is, on the corresponding 

undirected graph, adjacent (a and ß are called adjacent vertices if s~((i&^) for at least one 
edge) to a vertex Y where X is also the initial vertex on the directed graph of a directed edge 
labeled by a contained within relation and which has Z as the terminal vertex and Y is also 
adjacent to Z by a directed edge which has the same label as the directed edge connecting X 
and Y.    For example. 



has   the directed graph. 

*R1 

The resulting directed graph is. 
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*R1 

»R5 

*R5 

*R1 

-*~Z 

The transformation rule which removes the triplet from the triplet set is, 

(«,/tf,*Ri), (fi.y.*R5). (a"7.*Ri)  ^-(2), (3) 
Note   that  the   bar over  the   triplets   indicates   that   the   order of the  primitives  can be reversed 

However,   reversing   the  order  in  one   of  the   triplets   of  a  rule  necessitates  reversing  the order 
in all of the triplets of that rule which have a bar over them.   The reverse ordering of the triplets 
will eliminate inconsistencies which occur in a figure such as. 

using the transformation rule, 

lß,tt,*m, (jS,y.*R3), (>',«.*Ri) ^ (2), (3) 

di)    The  second case of an inconsistem relation between X  and Y is determined on the directed 
graph by a vertex X which is   adjacent to a vertex Y and where X is an initial node of a directed 

edge   to  a vertex   Z  which   is  labeled  by   a contained  within relation  and  Y is an initial node of 
a directed edge to a vertex W which  is  labeled by a contained within relation and  / and W are 
not the same vertex.    Foi example, 
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which has the directed graph. 

Note   that the first rule for inconsistent relations will reduce the directed graph to, 

*RI 

•»■   W 

*R5 

The   second   transformation  rule  for   inconsistent relations  removes  the  relation  between   X and 
Y.   This rule is, 

(a,/y,*R5), (n,y,*Ri), (/3,5,*Ri), (y,8,*R5) —*►(!), (3), (4) 
In the  example,   a = X, /3 = Z, y = Y and S = W. 

(iii) The third case of an inconsistent relation between X and Y is determined on the directed 
graph by a vertex X, which is the initial vertex for a directed edge to vertex Z which is labeled 
by a contained within relation and X is also the initial vertex for a directed edge to vertex Y 

which is labeled by a contained within relation and Z is the initial vertex for a directed edge 
to Y which is labeled by a contained within relation.   For example, the figure 

"■■ ̂ ~ 

has the directed graph 

'RS 

♦R5 
■^ Z 

*R5 
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The   resulting  directed  graph is, 

*R5 »R5 

and the transformation rule which removes the triplet from the triplet set has the same form as 
the rule before last, where i = 5. 

(j8.a,*R5), (/3,y,*R5), {y,a,*R5)  ^(2), (3) 

The transformation rules are summarized in Appendix 10.2. They have been created to 
process the triplet set, the final triplet set then being transformed into a tree structure and 

Reverse Polish string. The transformation rules have developed out of the nature of the pic- 

torial data being considered and the primitives and syntactic relation used in the grammar to 

structurally describe the data. The rules are not expected to beexhaustive though they will 
serve a great many configurations of the primitives and syntactic relations defined in the 

previous   chapter.     Once   the   triplet   set   is   considered   complete   the   set  is   partially ordered. 

5.3.2   PARTIAL ORDERING OF THE TRIPLET SET 

Following the testing of the triplet set for completeness and before any tree structure 
can be formed from the triplet set, the triplet set must be partially ordered. The partial ordering 
forms subsets of the triple set, which in turn allows the tree structures or parsings to be readily- 
obtained from the triplet set.   The partial ordering is as follows 

(1) The   triplet   set is   scanned for a  triplet which contains  a contained within relation.   The 
initial  and terminal vertices of this triplet are subscripted throughout the triplet set with the 

number,  k. of the  subset being formed.    The  triplet containing the   contained within relation is 
then removed from the triplet set, but must be replaced in the triplet set if Step 3 is not found 
applicable to any triplets. 

(2) The triplet set is now scanned for other triplets which have the same terminal vertex as 

the terminal vertex in Step 1 and also a contained within relation. The initial vertex of anv 
such triplet is subscripted throughout the triplet set with the number k. The triplet found in 
Step 2 with the contained within relation is then removed from the triplet set. 
(3) The triplet set is now scanned for triplets which have vertices which have a k subscript 
except those which have a terminal vertex which is the same as the terminal vertex of the 
triplet found in Step 1. These triplets are placed in the k'h subset. The vertices of any 
triplet placed  in  the  k,h  subset are   subscripted throughout  the  triplet set with  a k subscript. 

If a triplet which is k subscripted contains a contained within relation, the vertices of 
the triplet are desubscripted throughout the triplet set, and Step 1 is repeated where k is set 
to k+1.   However, before the k+1  subset is formed, the k subset is   completed, 

(4) When no more  triplets  can be added  to the kth  subset,  the k+1  subset is   formed.    If there 
is  no   k+1   subset   to  be   formed.  Step   1   is  repeated.     If Step   1 produces no new triplets to be 
subscripted, the unsubscripted vertices of the triplet set are subscripted with a 0. 

An example of the partial ordering of a triplet set is shown in Figure 7. Once the triplet 

set has been partially ordered into subsets, a partial ordering is plf ced on the triplets in the 
subsets.   The partial ordering within the subsets can be described by the following: 

(5) If  three   triplets   in   a   subset    Jtisfy  either of the  two  rules  listed below then the three 
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(T.Z.*R1), (W,Y,*R2), (W,Z,*R5). (X,W,*R5), (Y,Z,*R5) 

Step 1. (T.Z,*R1), (W,Y.*R2), (W, ,Z , .*R5).(\ .W,*R5), (Y,Z,*R5) 

(T.Z^'kRi), (W,,Y,*R2), (X,W,,*R5)) (Y.Z1,*RS) 

Step 2.  (T1Z1i»Ri)) (W,,V11*R2), (X.W^^RS), (Y,,/.,,^?) 

(T.ZJ^RD, (W,.Y1.*R2), (X)W1,*R5) 

Step 3,   (T,Z1.*Ri), (WI,Y1,*R2). (X.W^+RS) 

I I 

Subset I 

Step 1.   (T.Z^RD, (W2.Y1.*R2), (X2,W2,*RS) 

I II I 
Subset 1 Subset 2 

Step 2.3.   ^ 

Step 4.  (T0,Z1,*Rl)1 (W2Y1.*R2). (X2,W2,*R5) 

' 1 I IL I 
Subset 0 Subset 1 Subset 2 

Figure 7.    Example of Partial Ordering of a Triplet Set 
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triplets   are   subscripted  by   the  number of the  ra*h   such  grouping  in  the k,h   subset.   Note that 

the triplet can be subscripted more  than once by these  rules, where i,j •  5. 
(i)   (a,j8,»Ii), (a.y,*Ri), (/J.y. + Rj) 

For example. 

JL n 
(ii) (a.ß.*Ri). (y./S^Ri), (a,y,*Rj) 

For example. 

4L 

The partial ordering of the triplet set into subsets is to enable sublevels of syntactic 
tree structures to be formed easily. The ordering within the subsets is to allow particular 
triplets to be suppressed while a tree structure is being formed. Because the triplets are 

eventually to be used, they are suppressed but not removed from the triplet set. 

5.3.3   THE SYNTAX TREE 

Once the triplet set has been partially ordered it is transformed into a set of binary tree 

structures. Each tree structure represents a parsing of the figure where only primitives are 
allowed to occur as terminal points (leaves) of the tree and only syntactic relations to occur 

at nonterminal points. As indicated in 5.1, the following discussion on the tree structure is 

presented only to illustrate the formation of the structural description. Section 5.3.4 describes 

the process by which the structural description in the form of a string can be obtained directly 

from the triplet set. 
The tree structure is formed by a chaining process which operates on linked triplets. 

Two triplets are considered linked if they have a common primitive. In order to form a tree 
an arbitrary triplet is chosen as the starting point and is written as a binary tree with two 
leaves.   Thus, the triplet (a,/3,*Ri) forms the tree, 

*Ri 

\3 
where   the  tree   structure  preserves  the  ordering of the  elements   within the individual triplets. 

The chaining process now replaces the leaves of the tree with the syntactic relations and 

corresponding primitives taken from the triplets which are linked to the triplets which compose 

the tree.   This process is   continued until the triplet set is exhausted. 
For example, the figure and corresponding triplet set transform into the following tree 

structures. 

gives 
*R1 

(T.Y.*R1) 

(X,Y.*R2) 

(Y,Z,*R2) 
■*■ Y H^Z 

*R2 



-54- 

There  is no need to subscript the primitives of the triplet set  since no subsets will be formed. 

The  steps   in  building the  tree   structure  are  listed,  where  the (T,Y,*R1) triplet is   chosen first 
in building the first tree structure. 

1.   (i) *R1 A 
T Y 

(ii) *R1 

/\ 
T *R2 

/\ 
X Y 

(iii) *Rl 

*R; 

/ 
X *K2 

/\ 

For completeness, the other five parsings are shown. 

2.   (i) *R1 

/\ 

(ii) *R1 

/\ 
T           Y 1 *R2 

/\ 
Y             Z 

(iii) *R1 

/\ 
T               *R2 

/\ 
*R2 Z 

/\ 
X            Y 

3.   (i) 7\ (ii) *R2 

/ \ 
X               Y ) i              *R1 

/\ 
T             Y 
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(iii) 

I 
I 
I 
I 
I 

4.   (i) *R2 

/\ 
X Y 

*R2 

/ \ 
X *R1 

/\ 
T *R2 

/\ 
Y Z 

(ii) *R2 

/\ 
X *R2 

(iii) *R2 

/\ 
X *R2 

/\ 
♦Rl Z 

T Y 

5.   (i) *R2 

/\ 
Y Z 

(ii) *R2 

/\ 
*R1        Z 

/\ 
T Y 

(iii) *R2 

'Rl Z 

*R2 

6.   (i) *R2 

X Y 

(ii) *R2 

/ \ 
*R2 Z 

A 
X Y 
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(iii) "R2 

/\ 
•R2        NZ 

*R1 

The tree structures presented in the example may be considered as existing on a single 

level. However, the portion of the tree representing the syntactic relations of a primitive 

which is the initial vertex (on the directed graph representation of the triplet set) of a contained 

within relation or is syntactically related to a primitive which is the initial vertex of ^contained 

wuhin relation, drops to a secondary level, A double line represents the contained within 
relation and annexes the secondary level in the tree structure. The n,h level of the tree struc- 
ture can have a substructure annexed to it, forming an n +  1

ST
 level .    For example, given 

and the triplet 
set is. 

(T.Z,*R1) 

(W,Y,*R2) 
(W,Z,*R5) 
(X,W,*R5) 
(Y,Z,*R5) 

The    triplet   set   has   been   shown   to   reduce   to   (T^Z^Rl),   (W2,Y   ,*R2),  (X    W    R5) 
One parsing of the figure is developed as follows; •       2-   2'       • 

(1) *R1 

/\ 

(2) *R1 

T Z 

\ 
*l 

/ \ 

*R2 

/ 
W y 



(3) 
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*R1 

As  indicated  eailier.  the  forming of subtevels  in  the  tree  structure   is  the reason  for the 

ordering of the  triplet  set into  subsets.    The partial ordering of the  triplets  within the   subsets 

is    to  facilitate   the   suppression  of triplets   while   a   tree   structure   is   being formed.    The   sup- 

pression   of   the   triplets   is   necessary   because   the   triplets   indicated   by   either of the   triplet 

subsets below (where i,j'5). contain redundant information. 

(i)   (a./«,*Ri). (a,y,*Ri), Q3,y,*Rj) 

(ii)    (a./-i.*Ri). (>'.ß,*Ri), («.y.*Rj) 

Any   two  of  the   three   triplets  of  (i)  or  (ii)   completely  determine   the   third  triplet. The redun- 

dancy   is    evident   since   the   third   triplet   is  often   added   to   the  triplet set  because   a missing 

relation  is determined by the   completeness  tests.    The  added  triplet provides additional pars- 
ings of the    figure. 

The   partial  ordering  of the   triplets  of the   subsets   which  comprise   the  triplet set place 

subscripts   on   the   triplets   which    satisfy either   of  the   above   subsets.     To correctly   use the 

partial ordering within  the   subset,  any two of the  three  triplets may be used in forming the   tree 

structure and the  third triplet is   suppressed.    Since  the order in which  the two chosen triplets 

are used determines   different parsings,  there are  six possible parsings using one of the above 

triplet   subsets.     Whether all   six  parsings   are  distinct  depends  on   the  particular figure being 

parsed.    The  six possible parsings of the three triplets   of triplet subset (i) are listed   in Figure 

8.     A  set of six   similar parsings   can  be obtained from  the triplet  subset (ii).   The   subscript 

on the   i and j are to distinguish from which triplet each syntactic relation came. 

While   the   arguments   for  the   syntactic  relations   which were   described  in Chapter  3 are 

not  being  shown   in  the  examples,   it  is  important  to  note  that their  values do change as they 

enter   the   tree   structure.     The  difference  between   two  parsings  may  only  be  the difference in 

value of the  arguments of a  single  syntactic relation  appearing in  the tree  structure.   Parsings 

(1)  and (3) of the   above  example  illustrate  this  fact.    The difference between parsings (2) and 

(4) are also only the   difference in the   value of the   arguments of *Riaß in (2) and *Rif,    in (4). 

The   syntactic  relations  found  in  thj   triplets   transfer directly  to  the   tree  structure but 

the value   of their arguments do not.    The   arguments change in v.Tue   because, while the higher 

level constituents   are being related by the same syntactic relations which originally related   the 

primitives  of the   figure,   the  higher  level   constituents   have  different dimensional  values than 

the   primitives   and   hence   require   different   values   for   the   arguments   of  the   same syntactic- 
relations. 

The obtained syntax tree can be considered  a rooted tree.   A rooted tree is a tree in which 

one  node,  called  the  root,  is  given  a  special   significance.    This  introduces  a direction in the 



i).       *R1^ 

\ 
Ki. 

*Ri 
") 

(3). 

*Ri aß 

ß 

ß 
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c). maß 

^ßy 

ß 

*Ki 

(4). 

(6). 
*KJ«v ißy 

Ri, 

Figure 8.    F'ossible Parsings  of a Triplet Subset 
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tree; away (or in this case down) from the root and towards (up) the root. If a tree is rooted 
each node has a node immediately above it, unless the node is the root of the tree. In addition, 

because there is a specified order of the lines around any node, the tree is considered ordered 

I 
I 
I 
g 
I 
I 
I 
I 

where the nodes are ordered from left to right. A property of the node to be used later, called 

the outer degree of the node, can be determined by drawing paths from the root to the leaves of 

the tree. This uniquely associates a direction with each arc. The outer degree of a node x is 
independent of the orientation of the tree. 

5.3.4   THE REVERSE POLISH STRING 

The tree  structure is not the desired final form of the structural description.    It will be 
converted to a linear string which uses Reverse Polish notation to provide a more useahle form 
of the  structural  description to the   semantic component.    As pointed out earlier, the explicit 
formation  of the  tree   structure  is not  a necessary  step  in order to obtain  the Reverse Polish 
string. 

The tree structure can be readily transformed into a linear string which uses Reverse 
Polish notation to order the constituents and the syntactic relations between them. The string 

can be written by traversing a path around the tree structure from left the right. The string is 
written from left to right, where primitives are pulled off as they occur and syntactic relations 

are placed in the string at their last possible encounter with the path. The one exception is in 

leaving a sublevel, in which case the contained within relation is entered into the Polish String 

after a primitive of the next higher level is entered into the string. Recall that the con/omerf 
within relation is represented in the tree structure by a double line. 

An example should clarify any confusion on this process.   Given the figure, 

a 
i) 



The graph and triplet set is: 
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(T.D,*R1) 

(A,I),*R5)' 

(B,D,*R5) 

(C,D.*R5) 

(A.B.*R2) 

(A.C,*R1) 

Subset I 

One possible parsing of the figure is. 

/*Ri( 

The  Reverse  Polish  string of this parsing  is *uill up from  the dotted path  giving, 

T,A,C,*R1,B,*R2.D.*R5.*R1. 

At this time no attempt is made to obtain all possible parsings. Otherwise, a triplet relating 

B and C would be needed though it would be suppressed in this particular parsing. As men- 

tioned earlier, it is not clear whether every possible parsing is needed for pattern recognition 

or whether producing every parsing is merely a waste of computer lime. The number of different 

parsings which can be semantically interpreted by the program depends on the degree of exten- 

siveness of the grammar. 

In order to obtain the syntactic string directly from the triplet set, the chaining process 

which operates on linked triplets is used. The chaining process replaces a primitive in the 

string with the syntactic relation and corresponding primitives of a triplet which is linked to 

the triplet containing the primitive being replaced. As is shown in forming the tree structure, 

partial ordering and   suppression of triplets in the triplet set are necessary. 

Using the example on  this page,  the  steps in forming the  syntactic string are   a;  follows: 
(1) T,D,*R1 

(2) T.A,D.*R5.*R1 

(3) T,A,B,*R2.D.*R5,*R1 

(4) T.A,C,*R1,B,*R2,D,*R5,*R1 
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In   order   to   lest   the   well-formedness   of   a   syntactic   string   in   Reverse   Polish   form the 

procedure outlined below is followed. 

(i)    Assign a weight W to each element of the string.   The weights are assign- 

ed  by  the  formula W-l   d,  where  d  is  the  number of lines leaving a mule 

(away from the root as defined in 5.3.3). 

(ii)    Find   SW(i)   for   i   1 n   elements   of   the    string,   where   the   left most 

element of the  string is i=l. 
n J 

(iii)    Well-formedness   requires   that  SW(i)   1   and lW(i)   for  any j   ■    n  i s never 

less than 1, i.e.. SW(i)   ■  1, j   1 n. 
i = 1 

Testing the well-formedness of the syntactic string of the previous   example: 
T     A     C     *R1     B     *R2     D     *R5     *P,1 

i :      1       2       3        4        5 6       7 8 9 

W(i);     111-11-1-1 1-1 

SW(i);     12       3        2       3 2       1 1 1 
J 9 

Since IWd)       1  lor all j    1 9 and SW(i)-l,  the   string is   well-formed.   Note   that the degree d 
i i 

of *R5 in the tree structure   is 0 and  the degree of the primitive D is 2 

5.4   A SUMMARY OF THE SYNTACTIC   COMPONENT 

The   syntactic   string   will  now   be   sent  to  the    semantic  component  for  a   semantic inter- 

pretation.      Because   the   semantic   component   is   composed   of  a   grammar  which  operates   on 

linear   strings   of constituents,   the  picture   which   is   a   two-dimensional   configuration  must be 

reduced   to   a   one-dimensional   configuration.      This   reduction   is   performed  by   the syntactic 

component which, in summary obtains the structural description in the form of a linear string by 

using the grammar Kl* to form the lines in the figure from the   discrete points and then form the 

higher level primitives from  the lines.    Because  the  syntactic relations are contained   implicitly 

in the pictures  but must be made  explicit in  the  syntactic  strings for the  semantic component, 

the   syntactic   component  develops   the   triplet   set  of  3-tuples   which   are  primitives   and their 

corresponding   binary  relations.   This   triplet  set  is  preprocessed  and then  normalized  for the 

semantic component by writing it as a linear string using Reverse Polish notation. 

The  transformation of the  triplet set actually results  in  a  set of structural descriptions. 

These multiple parsings can be the result of two different processes. 

(1) Because there is a choice as to which artificial lines to add to a figure 

to allow the figure to be parsed, each different configuration of the figure 

after the   artificial  lines have been  added   provides a different triplet set. 

(2) In turn, each triplet set can provide multiple parsings of the figure, as 

described earlier in this chapter. 

Either of the above steps can cause the number of parsings of a figure to be quite large. 

The   resulting   syntactic  descriptions  are   sent to  the  semantic  component,  the   analyses 

of which are   described in the  next chapter. 
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6.  THE SEMANTIC COMPONENT OF SAP 

6.1    A SEMANTIC    INTERPRETATION 

The semantic component operates  on the   structural tlescription L^^ to provide   a semantic 
interpretation to the pictorial data, using a grammar to provide this interpretation.    As indicated 
in the previous chapters,a one-dimensional grammar operates   on linear strings.    For this reason 

the syntactic, component transforms the input picture L.i to a syntactic string L*-.   which struc- 

turally describes L..    The grammar of the  semantic component operates on the   syntactic string, 
eventually  placing  it  into one or more  classes.     The  classification of the  syntactic  string is 
actually   the   assigning   to   it  the   names   (labels) of  the   classes   into   which  it  is placed.   The 

forming of higher level constituents from the   symbols of the  syntactic string is defined by the 
rule stated in Chapter 4 for forming segments  of syntactic   strings.    This rule is, 

<sss^::=<primitive>' primitive^ <syntactic relations | 
<sss><pr nrtivexsyntactic relation> | 

<primitivt ■ <sss"'<syntactic relation> | 
<sss><sss><syntactic relations 

This   is  partially   represented  by   a  tree   structure   in   Figure  9.     The   semantic  component, in 

using   the   grammar,   will   assign  names  of classes   to  the   constituents  which  are generically 
represented by <sss> in the tree of Figure 9. 

< s s s> 

<syntactic relation> 

<syntactic relation> 

■primitive- <primitive> <svntai tic relation;» 

Figure 9.   General Syntax Tree 

Before desc ibing the  grammar which comprises the  semantic component, it is worthwhile 
to  first furthei   iiscuss  the   syntactic description  which  the   semantic component receives.    It 
was  shown in the last chapter that the Reverse Polish string, which is the syntactic description, 
is   obtained   from   a   tree   structure   which   is   also   a   syntactic   description of the   figure to be 
semantically   interpreted. 
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Using the example of the directed graph, 

<primitive>p 

<syntactic relation^ 

<primitive> 
P2 

<syntaclic relation^ 

<primitive>p 

the tree   structure obtained by the syntactic component representing one parsing of the figure 
is  of the form shown below. 

syntactic relation>. 

<syntactic relation> 
<primitive> 

<primitive>r <primitive>p 

The important point is that the tree structure immediately above is isomorphic to the tree struc- 
ture shown below, 

<sss> 

<primilive>r 
<syntactic relation^ 

<primitive>pi <primitive>p2      <syntactic relation>s 

the  general form of which  is presented in Figure 9.    However,  the <sss> constituents in the 
above tree structure remain unlabeled by the   syntactic   component.   It is the  semantic  component 
which will assign labels to the <sss> constituents. 

The algorithm described in Sections.3.3for creating tree structure of the form shown on 
this page could be easily applied, with only slight modification, to create the tree structure 
above from the triplet set. Also, the algorithm described in Section 5.3.4 for forming the Reverse 
Polish string from a tree structure directly applies to the second tree structure above. 
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In view  of this,  it is  somewhat  arbitrary as  to which form of tree  structure is   chosen to repre- 

sent the parsing of the figure.   The second structure has the   advantage of explicitly representing 

the   constituents   which  are  to be   labeled  by  the   semantic  component.    However,  in  this ieport 

the first tree  structure on the  last page is used because it is a more concise notation by impli- 
citly representing the structural constituents. 

The   grammar  of  the   semantic   component  K3*   is   a  5-tuple   (T3,N3,R3,C3,SC).     The set 

T3   is  the   set  of terminal   symbols   and   is   a   union of the   set  P of primitives and   the set S of 

syntactic relations.    The   set N3  is   the set of nonterminal symbols of the grammar.   The set R3 

is   the    rules   of   the   grammar   which   determine   which   generic   label   should  be   assigned   to a 

particular constituent.    The  set C'3  is   a set of matrices  which contain constraints for the rules 

of  R3.     The   goal  of the   grammar  K3*   is   a  scene.  SC.   and does not appear on the right hand 

side   of   any   of  the   rules   of  R3.     The   grammar  K3*   is  partitioned   into two levels, each level 

consisting of rules from R3 which assign meaning to the figures of the scene. 

The   first   level   of  the   grammar   consist  of  rules   which   assign  meaning   in   terms of the 

structure   of  each   individual   figi re.     The    second   level   accepts   those   structural descriptions 

which  have  not  received a singular  semantic interpretation from  the  first  level of the grammar. 

The   figures   being   sent   to  the    second   level  of  the   grammar may  be   ambiguous  at this   point, 

that  is.  more   than  one meaning  has  been  assigned   to  the  figure.    However,  it is just as likely 

that  the  figure   cann M   be  completely  identified by   the   first  level.    The   second level attempts 

to  semantically   inteipret the  figure  in  terms  of other figures   in  the   scene.    Thus, the second 

level   uses   the   contextual   surroundings  of the  figure,   i.e.,   the   syntax of the  scene,  to assign 

meaning,   while   the   first  level   uses   tiie   syntactic   structure  of the   figure,  i.e.,  the contextual 

surroundings   of  the   primitives   to   assign  meaning   to   the   figure.     Contextual  constraints are 

considered  at  both  levels  of the   semantic  component  jrammar.     In  addition  it is desired that 

the   second  level  grammar use  a  form of deductive  inference decision making.    The subcompo- 

nents of the semantic component are shown in Figure  10. 

To effectively use the first and second level grammars, the syntactic string is first 

processed by an abstracting subcomponent. The abstracting process described in the next 

section obtains an abstraction of the figure to be identified. This abstraction eliminates many 

fruitless   attempts  by  the  first  level  grammar to  assign  a  semantic  interpretation to the figure. 

6.2   THE ABSTRACTION OF   FIGURES 

To effectively use the rules of the first level, an abstraction of the structural description 

is obtained to provide a preliminary classification of the figure without interference from details 

of the figure. The preliminary classification eliminates the searching through a great deal of 

the grammar which would not be applicable. Thus, the first level of the grammar would be 

partially ordered with respect to general classifications of the graphic data. It is reasonable 

to consider all data to be amendable to some form of classification based on major character- 

istics of the expected figures. 

The abstraction subcomponent receives from the syntactic component the Reverse Polish 

string representing the structural description of the scene. Thus, the first task of the abstraction 

subcomponent is to obtain the individual figures of the scene to enable the first level grammar 

to operate on these syntactic string segments independently. To obtain the syntactic string 

segments of the scene a modified bottom-up strategy is used on the syntactic string operating 

on the string from right to left. 
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The syntactic string is segmented into the various figures according to the grammar rule 

for forming syntactic string segments. This rule and two others used to ibtain the individual 

figures are listed  beiow. 

< s c e n e; 

vfigure" 
<sssv 

<fittute>,, ^scenex, <8cene>., 
-syntactic relation^/*Ri{n1 "■0,n2,n3) 

for i=l,2,3 or 4 

<sss '. . 
i<8S8>1,<8S8>,, .SYntactic relation> | l| ii     - 
^sss^.. <primitive^.. ^syntactic relation^ 

ii   ' ii      J 

■-primitive ■.. <sssN
1 ^syntactic relation> | 

primitive^., <primitive^.. -^syntactic relation"- 

The   i   and  j   subscripts  on   the   constituents  will  be  explained  shortly.    The restriction 

on the production rule for a scene indicates that a figure   is defined to be either of the followinj-: 
(1) A figure X is represented by a syntactic string segment sss1 and is 

related to a figure Y represented by a syntactic string segment sss2 by a 

directional   relation   (horizontal  or  vertical  relation)  *Ri(n1 ,n^ ^3)  where 
i=l,2,3   or  4  and n^O.     Since  n^O  signifies   the  two  figures   X  and Y 

are touching, n, •() requires  X  and   Y to be two related constructions in a 
picture   which  have   no   contiguous   elements.     As  defined  in   Chapter 4, 

n2   and  n^   indicate   the   secondary  position  between  constituents, where 
ns^O and is not present for a directional relation. 

(2) A figure X is represented by a syntactic string segment sss, and is 

related to a figure Y represented by a syntactic string segment sss2 by a 

contained within relation, *Ri(n1,112^3) where i=5 or 6. 
The two above definitions allow figures to be drawn in a completely recursive manner. 

Thus, the first definition allows any number of non-contiguous figures in a horizontal row, 
vertical column, or combination of the two to be structurally represented in a syntactic string 
and the abstracting component will be able to segment the string into the individual non- 
contiguous figures. Similarly, the second definition allows any number of figures to be imbedded 

within a figure. For example, the use of the two definitions allows a row of houses to be 

imbedded within a house, as shown below. 

Or,   a   row   of houses   can   be   imbedded in 
a    subconstituent   of   the   house,    such   as. 
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If   it   is    desired   to  not   allow   figures   to   be   imbedded   within   figures,   it   is necessary only to 

require the  syntactic relation which occurs on the right-hand side of the rule defining -scene- 

to be   a directional relation and  eliminate the second definition ol above. 

Once the syntactic string has been segmented into the segments representing the figure 

of the scene, the abstracting subcomponent then abstracts the syntactic string segment to 

obtain the basic features of the figure. The abstracting process in effect first removes ail 

detail from the figure. This leaves an outline of the figure which is further reduced to a set 

of abstractions of the figure, each abstraction somewhat more abstract than the last. In attempt- 

ing to generally categorize the figure, the abstractions are used in the reverse order of which 

they were produced, the most abstract first. The method for performing the abstractions is 

actually a heuristic which is independent of any grammar being used to semantically interpret 
the  figure. 

To obtain the abstractions of the figure from the structural description of the figure, as 

in obtaining the string representing the individual figure, a bottom-up strategy is used on the 

syntactic string. The rule to perform this abstracting is the same rule shown above for forming 

the syntactic string segment constituents. The i and j are attributes of the -sss - constituent 

which allow the abstractions to take place. As the -sss constituents are formed, they arc 

assigned the name of the predominant constituent of those constituents which form the - sss:> . 

This predominant constituent is the one which has the largest area. Thus, the i subscript on 

the - sss-- constituents is the name of the predominant subconstituent, where i may be R, 

Ti, etc.. The value of i is then used to name higher level constituents when the particular 

constituent is considered the predominant constituent. The j is the area of the constituent 

and is used to determine which constituent is the predominant constituent in forming a higher 
level constituent. 

The   following  example   should   clarify   the   process  of  abstracting  a   single  figure.    The 

syntactic string segment constituents are represented in the   string by Sn(i.k,m) which is defined 

segment  constituent   number;   i   1   if  the  predominant   constituent  is   a  rectangle. \=2 
if the predominant constituent  is   an  isosceles  triangle:  k - horizontal dimension; m = vertical 

dimension.    Step  I  is   the  syntactic string of the figure. 

!.   R<3.2,2) R(4,2,4).*R4,R(5,2,:).*R4,Tl(l,8.6),*RI,R(2,4,5),R(l,8,l2),*R5(FJOT),*R 
2. R(3,2,2),RU..'',4),*R4,R(5,2,:).*R4,TI(1,8,6),*RI,SI(1,8,I2),*R1 

from S|(l.8,12) —»R(2,4,5)^(1,8.12),*R5(B0T) 

3. S2(I,4,4),R(5,2.2),*R4.TI(1,8,6),*RI,SI(I,8,I2),*R1 

from S2(l,4,4) —- R(3,2.2),R(4,2,4),*R4 

4. S3(1,6,4),T1(I,8,6).*RI,SI(1,8,12),*R1 

from S2(l,6,4) —► S2(l ,4,4),R(5,2,2),*R4 
5. S4(2,8,10),SI(I,8,I2),*R1 

from S4(2,8,10) — S3( 1.6,4),TI(1,8,6),*R 1 
6. §5(1,8,22) 

from 85(1,8,22) —►84(2(8,10),SKI,8,12),*R] 
Looking at the abstractions pictorially. 
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1. R3 

4. 
6. 

Examining   the   abstractions   in   thei r  reverse   order,   that  is    the   most   abstract  first,   the fifth 
abstraction or Step 5  would  indicate  that  the  figure  should be  operated upon by the first level 
grammar and cons.dered to be in a class which represents the category of house type. 

The   six  categories   into which  the  pictorial  data being  considered in  this report may be 
placed   after   it  has   been   abstracted   to   a   string   composed  of  the   three  ordered constituents 
■csyntact.c   strmg segment-,  Syntactic   string   segment,  Syntactic  relation-   are  listed below 

I. STORE: CD Rectangle   contained    within   rectangle   and 
the final abstraction is a rectangle. 

2. HOUSE: 

3. SILO: A 

Triangle   above   rectangle,   where   3*   (area 
of   triangle)    •   (area   of  rectangle)   and   the 
final abstraction is a rectangle. 

Triangle above rectangle, where 3* (area 
of triangle) ■ (area of rectangle) and the 
final abstraction is a rectangle. 
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4.   TREE: 

ü 
Triangle      above     rectangle,     where    (area 

of   triangle)   >   (area   of  rectangle)   and 

the final abstraction is a triangle. 

5.   BULBOUS; 

6.   OFFICE BLDG;        I    i 

Circle   above   rectangle,   and    the   final   ab- 

straction is   a   circle or rectangle. 

Rectangle   above   rectangle,   and    the   final 

sbstraction is   a rectangle. 

7.   UNICORN: Anything which cannot be placed into one   of 

the   first six categories. 

Because the segmenting of the syntactic string into segments which represent individual 

figures in the scene and the abstracting process of the figures both use a bottom-up strategy, 

the two processes can be performed at the same time. Thus, while a scene is divided into 

the figures which comprise it. the figures are being abstracted. The use of the bottom-up 

strategy avoids the left recursion problem of the top-down strategy described in Chapter 2. 

For example, consider a scene  composed of the two figures below. 

R2 

T12 

R4 

R3 

The    abstraction   subcomponent  would   operate  on  the   syntactic   string  to obtain   the tree 

structure   shown  on  the   next page.    The   tree  structure  indicates the  individual  figure  and its 

abstractions.     As   defined   earlier,   the  j   subscript on   a  constituent  is   its   surface  area.   The 

relations   and   primnives   do  not  have   their  arguments   shown.     The   relation *R4<i)  represents 
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the restricted relation »RUn, -O.n^nj) previously discussed in this chapter. Again, !he n, -1 
indicates that the figures are not contiguous which in turn allows the abstracting component 

to separate them. 

TI1,R:,*R1    . T12 

syntactic 

relation^ 

*R5 ,     *R1 

vsyntactic 
relation ■ 

*R4C 

The   entire   abstracting   subcomponent  has   been   implemented   in   FORTRAN   on   the   IBM 7072. 

The program is  described   and listed in Appendix 10.1 of this  report. 
The   abstracting   process   is   a   valuable   tool   in   dealing   with   the   problem   of multiple 

parsings.   If all of the parsings must be operated upon by the  semantic component, the  abstract- 
ing process  should have  a great deal of time  in eliminating some unproductive attempts by the 

first level   grammar.    The multiple parsing problem  is  also the reason for the  semantic compo- 
nent being divided into two levels.   The division allows the syntactic string to be semantically 

interpreted,   one   segment (which  represents one   figure)  at a  time.    If each figure  was not pro- 
cessed   separately,   because   of   the   large   number  of  parsings   per  figure,   the   computer could 

possibly run  out of space, or use  an  excessive  amount of time.    For if a scene of two figures 

which have m, and m2 parsings   respectively, the maximum number of passes through the seman- 

tic  component  1st level  grammar to identify  the  figures  in  a   scene  is m,   + m2.   However, the 
the   number   of  passes   through   the   semantic   component  grammar   if  the   en'.ire   scene  must be 

considered   at   each  pass   is   m, x  m. The  fact that the  abstracting process is   a heuristic 

independent  of  the   grammar rules  which  it uses  may  prove  to be   an  additional nicety of the 

procedure,   allowing   various   criterion   other   than   largest  area   to   determine    the predominant 

constituents. 
The abstracting process provides a Gestalt of the figure and hence plays an important 

role in human pattern recognition. M.D. Vernon42 points out that the most inip>'riant feature 
in human pattern .ecognition is the general outline or contour of the object. This may be 
because a child learns first by touch and thus associates objects with their contour. In any 
case there is little doubt that an adult tries to first classify a figure g-nerall;, before he 
proceeds to identify it. Few individuals would try to identify a figure as a church if they 

didn't think fiat the figure is some type of building. Another manner in which psychologists 

might describe  the abstracting process  is providing a set.    That is, the details   of the figure 
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make sense only because we know what type of details to expect by means of a set orientation 

M (no  connection  to  set theory).    The   abstracting process  allows  this orientation  to take place. 
H A  significant use of the abstracting process  is  in  the filtering of a complex  scene.   For 

example, if aerial photographs are to be scanned for a particular figure, the abstracting process 
would quickly eliminate those figures from the scene which are of no interest. This avoids the 
brute force approach of attempting to identify every figure in the photograph. Of course, the 
choice of criterion by which to perform the abstracting  is critical. 

Once the abstracting process is completed, and by means of one or more of the abstrac- 
tions the figure has been roughly classified, the original structural description (the complete 
syntactic string segment) is operated upon by the first level of the grammar. 

S 

I 
I 
I 
I 

m 

m 
em 

6.3   THE FIRST LEVEL GRAMMAR OF    THE SEMANTIC COMPONENT 

As  pointed  out in Chapter 2,  the primitives have no meaning independent of their use, in 

a   particular  environment.     This   problem   has   not   arisen   in   the  work   by  Narasimhan because 

the primitives  are  lines   as   are   the   graphic data.    Hence, except for noise, if a primitive is pre 

sent it is known to be a bubble chamber track.  The severe semantic constrictions on his proble 
provide the primitives with a singular meaning.    But in a less semantically constricted proble 
where the primitives may have one of several meanings,  a major difficulty atises.    The probl 
is that a single   primitive, which is   able to have multiple meanings, can be assigned  a meaning 
only in the   context of other primitives.    For example, a rectangle cannot be identified as either 

a   door or   a   window   until   its   location   and   dimensions   relative   to  the   surrounding primitives 
are considered. 

in view of <his difficulty, many of the rules of the first level grammar of the semantic 
component are context sensitive, providing restrictions which must be satisfied before the 
rules are considered applicable. These restrictions are generally concerned with the relative 
size or location of the constituents of the rule.   The rules are of the general form, 

X.:=Y,W,*Ri,Z,*Rj '# 

0r   JF(X|()    0        ouj 
xk.xm,*Rj(n,,n2.n3) 

where the  arguments of the   constituents are not shown.    Note that the right hand  side of the 

rule  is  written  in  early Reverse   Polish notation.    The  rule  states that constituent X may be 

formed  from constituent Y in relation Ri with constituent W, this   in relation Rj with constituent 
Z, etc., within the  context of,0. 

The   0   is   a   set  of contextual   constrictions {0.}  such  that  the  members   of 0 may be of 
either form indicated. 

1. When >r.   F(xk) G Ci(xm),   F and G are  functions which obtain the height 
(H)   or   width  (W)  of  the   constituent   xk   and   xm   where   k  may  equal m. 
The   0   is   a  member   of   the   set  of  arithmetic   relations.     For example, 

if P-H, and xk = R (a,b,c) then F(xlt)=H(R(a,b,c))= c. 

2. When/fr.-:xk,xm, ♦Rj (n^nj, n3) the j, n,, n2. and n3 may be constrained 
values    indicating   restrictions   on   the    syntactic   relation   between  the 

constituents   x|(   and   xm.    The   definitions of n,,  n2,  and nj  are found 
in Chapter 4. 

Thus   the   constraints   may   operate  on   a   single   constituent or  relatively   between two 

constituents.    The use   of the contextual constraints raises a major problem.   The problem is 
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that a single constraint may not necessarily operate on constituents of a single rule but across 
rules on constituents at different levels. This requires that the formulation of the restriction,s 

be defined and noted independently of the   formulation of the rules. 
To accomplish this the constraints are written as a set of matrices. C3. Each matrix 

contains the constraints for different constituents which are restricted by a common constraint. 

It is then possible for the rules to be flagged with the entries in the matrix which pertain to 
the constituents of the rules which are to be constrained. While the constraints are between 

constituents they actually determine the Identification or well-formedness of a figure, depending 

on whether the grammar is being used for recognition or generation. Since it is the figure for 

which the constraints are ultimately operating and because a top-down strategy is used by the 
first level of the semantic component, the matrix entries which apply to the constituents of a 

figure are attached  to the  rule  which has the name   of the figure on the left-hand  side of the rule. 
An   example   should   clarify  the  preceding paragraph.    Consider a  grammar which  wishes 

to be  able to recognize either of the two structures shown in their general form. 

Assume that the structures can be identified as either a doghouse, shed, or garage 

depending upon how they satisfy various constraints. To perform this recognition the following 
grammar is used. It should be noted that the use of the grammar is to assign labels to the 

constituents of the parsing of the figure. Thus, the semantic grammar is essentially assigning 
labels to the <sss' constituents defined earlier, the assignment algorithm being performed in 

a top-down manner. 

<type 1 bldg •::= doghouse"» | <shed"' | <garage> 

<doghouse>:;=<facade l> / (1,1),(1,2),(2,2), 
(2,3),(3,2),(3,3) 

< shed>:;=<facade 1> / (1,!),(!,2),(2,2), 
(2,3),(3,2),(3,3) 

<garage>:;-:<facade l> / (1,1),(1,2),(2,2), 
(2,3),(3,2),(3,3) 

facade l~-;:= >roof><front 1 ^ vertical relation l> 

<front !>::= ';panel> | 
<door><panel"'   contained within relation 5^ 
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<roof>;:=i<t808cele8 triangle 
vpanel>::=<rectangle 

<door^:;--<rectangle • 
<tectangle>;;= R(n,h,v) 

<isosceles triangle>;:=TI(n,h,v) 

Ihe   entries   in  the  matrix may be defined 

1. 

2. 

3. 

The   contextual  restrielions   are   indicated  by   the  matrix  entries  (i.j),   which  in this case 
apply  to  the   type  I  bids  constraint matrix.    The   rows   and  columns  of the matrix are labeled 

with  the  names   of the  constituents  which  are  restricted  by  a constraint 0..    The names   of the 
rows and   columns of the constraint matrix and the corresponding number of the rows and columns 
are: 

roof = 1 

panel =. 2 
door 3 

The   actual   constraint  matrix  is   shown  in Table 
as  follows: 

For  entry  (i.j),  if i  j,   th'Jtl  the  constraint  involves  only one constituent 

and   is constraining the constituents height relative to its width. 
F-or  entry  (i.j),   if i<j,  then  the   constraint   involves  two  constituents and 

is   constraining some combination of their heights and width. 

For entry (i.j),  if j   j, then the constraint   involves   the   syntactic relation 

between   two  constituents   and   is   constraining  their  relative  position in 
one or both directions. 

The row  and  column  labels are those constituents  which  appear on both  the left-hand   side and 

the r.ght-hand   s.de of the rules.    In addition,  constituents  which   are not explicitly constrained 
need not be   assigned a row and column of the matrix. 

To use the constraint matrix, it is necessary to check the list of constraint entries found 
after the rule, in which the left hand member is the first subgoal being used in the top-down 
strategy. Thus, one rule generally lists all the constraints for an identification. Each time a 

rule is used in the identification algorithm the list of constraint entries is checked to see if 

any are pertinent. If any constraints are to be considered, the correct constraint is obtained 

trom the matrix and performed. If the constituents do not satisfy the constraint, the predicted 

identification is rejected and a new identification is begun in a top-down manner. If the 
constraint is satisfied, the present identification continues. 

An example using the grammar rules just described and the constraint matrix in Table 2 
is indicated in Figure II. This applies a semantic interpretation to the syntactic string in the 
form of the label <doghouse>. The complete process would then attempt to apply the remaining 

labels to the syntactic string. In Appendix .9.2 is contained a larger grammar for pattern 
recognizing two dimensoinal buildings.   The constraint matrices are also included. 

All possible semantic interpretations are obtained for the figure. Thus, if in using the 

top-down technique the figure is identified, the process does not stop until all possible ident.- 
f.cat.on are tried. If the figure receives a singular identification, the segment of the syntactic 

string of the scene which represents this figure is assigned the label or identification which 
has been obtained. If an additional figure is contained in the scene another segment of the 
syntactic string representing a second figure is sent to the first level grammar of the semantic 
component.   Again the procedure for semantically interpreting the figure is followed. 
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When all figures of the scene have been processed by the tint level  grammar, the semantic 
interpretations of the figures are sent to the second level grammar. 

6.4   THE SECOND LEVEL GRAMMAR OF THE SEMANTIC COMPONENT 

While   the  firs,  level  works   in  terms of the   syntax  of the  f.gure  (i.e..  the context of the 
pr.mmves)   the   second   level   works   in   terms   of the   syntax  of the   scene  (i.e..   the   context of 
the   figures).     Once   all   the   f.gures   of the   scene   have   been operated   upon by the  first level 

grammar and the resulting semantic interpretations have been sent to the   second level grammar 
one of the following situations   has been obtained by the   first level grammar and the   correspond'- 
ing subsequent steps indicated are taken. 

1.       Each figure of the   scene has received a  singular semantic interpretation. 
In   this   case   the   semantic   labels   are  operated  upon  by   the  rules  of the 
second level to obtain a semantic label for the scene. 

2.       Each figure of the  scene has received at least one  semantic label and at 
least  one   figure  has  received  more  than  one   semantic   label,   that  is. 
the   figure  is  considered  ambiguous.     In  this  case  the   set of all combin- 
ations of labels of the   figures   is processed by  the second  level grammar. 
The   second  level   grammar,  whose  rules  define  the   context of the figures 
may   eliminate   some   of  the   semantic   interpretations   which  cause  one or 

more  of the figures to be ambiguous.    It is possible that after the process- 
ing   by   the   second   level   grammar   the   figure   will   still   be  ambiguous.    In 

this   case   the   scene   will   receive   more   than  one   semantic  interpretation, 
making it ambiguous. 

I.        At least one figure cf the  scene has received at least one semantic inter- 

pretation  and   at  least one  figure has received no semantic interpretation, 

that   is,   the   figure   is   considered   anomalous.     In   this   case   a deductive 

inference  procedure   will  be   used  to  attempt  to  semantically  interpret the 
anomalous figures. 

The first and second case of above use the same procedure of a bottom-up strategy in 
apply.ng the rules of the second level grammar. The third case in addition uses a form of 
deductive .nference to semantically interpret the scene. Its procedure is outlined in Chapter 7 
under the section on future extensions. 

The  rules  of the   second  level  grammar are of the  same form  as  the first level grammar 
that  is, o , 

X=Y,W,*Ri,Z,*Rj,.../0 

where Y,  W,   and  Z  are  constituents  related by  the  indicated relations.    The 0 is   again a con- 
textual   constraint   and  has  the   same definition   as   that    lor    the first  level grammar    The  con- 

stra.nts are placed in matrices  as  they were for the first level grammar.    An example of such a 
matr.x   i,   shown   in   T.ble  3,   where   house-1.   garage = 2,   and  doghouse=3.     A   sample   of the 
second level grammar is  as follows: 

<scene>::=<backyard> | <home> 

<home>::-<house><backyard^<horizontal relation^ | 
vhouse-- garage-^horizontal relation -1 

<house^ <doghouse > <horizontal relation • ' (I,!),(! ,2), 

(1,3),(2,2).(3,3) 
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■,backyard ^.:=<garage"' ■-.doghouse"- «horizontal relation '/(Z,2),(2,3), 
(3,3) 

In the   second  case, where there  is  the possibility of the  scene receiving  more  than one 
label,   those  combinations  of labels  of the  figures   which are not well-formed   according to the 
rules  of the   second  level grammar  are  rejected.    The  procedure  in using the grammar and the 
constraint matrices is the same as that described for the first level grammar. 

The third case requires some form of deductive inference to supply enough information 
to use the rules of the second level grammar. The procedure described in Section 7.1 is 
actually developed for the more complex situation in which more than two figures make up a 
scene. 

If the figure cannot be identified by either the first or second level of the semantic com- 

ponent grammar then the figure may either be truly anomalous or the grammar is not satisfactory 

for the graphic data being considered. An unsatisfactory grammar may be due to the fact that 

the grammar is incomplete and hence just not extensive enough or the particular grammar being 
used may be a poor choice for the particular graphic data. A grammar which is thought not to 
be sufficiently extensive can most likely be corrected without an unreasonable amount of 
difficulty. If the grammar is considered a poor choice either a new set of primitives and/or 
syntactic relations is needed to parse the data or a new set of grammar rules using the same 
primitives »ad syntactic relations  is required. 
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7.   FINAL CONSIDERATIONS 

7.1    FURTHER EXTENSIONS 

The   following   list  provides   some   of  the  many   extensions   which   can   be  considered for 

SAP and   for syntax-directed models in general. 

1. The ability for the model to learn is a natural development in using a 

grammar. A higher level of learning would allow the model to have some 

self-organizing or inductive inference capabilities43-44 in order to extend 

its grammar as it sees fit, modifying or redefining rules of the grammar 

when necessary. 

2. The use of deductive inference mentioned in section 6.4 is not as ambi- 

tious  as  the preceding extension and thus deserves  some outlining.    The 

I use   of deductive   inference   can  be   applied   to   the   situation   in   which at 

least one figure of a scene has received at least one semantic inter- 

pretation and at least one figure has received no semantic interpretation. 

I As   mentioned   in   section   6.4,   the   procedure   is   actually   of significant 

value only if more than two figures comprise a scene. The inference is 

made   assuming an  identification of one of the  unlabeled figures.    Using 

I this   assumption,   identifications   are   obtained   for   various   other figures 

and   these   identifications   are   checked   for   contradictions.     If   a contra- 

diction    (reductio   ad   absurdum)   does   arise,   the   original   assumption  is 

known  to  be  wrong and   hence  thai particular meaning is  eliminated as a 

possible   identification   of   the   figure   to   which   it   was   assigned.    Using 

an  inference making procedure necessitates detailed bookkeeping so that 

a   distinction   can   be   maintained   as   to   those   figures   which   have been 

rigorously   identified   and   those   figures   which   have   been   identified on 

the basis of the assumed identification of another figure.    If an assumed 

identification is found   to be incorrect due to the   constraints, any identifi- 

cations   based  on  the   incorrect  assumption  must be removed  by  a back" 

(tracking procedure. 

The  above  use of deductive  inference can be  applied to actually perform 

either of two types  of identification.    They are: 

(i)        K-nowing   that   a   particular   identified   figure   is   in   the   scene,  an 
unidentified figure is   completely identified. 

(ii)       Knowing   two   partially   identified   figures   in   a   scene,   each   is 
identified from information of the other. 

In    the    .second   type   of   deductive   identification    situation,   the  partial 

identification   would   come   from   the   first   level   grammar of  the  semantic 

component.   The difficulty is in extrapolating these partial identifications 

to deductive  inferences  by  the  second level  grammar.     This  is an inter- 

esting problem which has yet to be considered in the literature. 

3. The possibility of merging the generation and pattern recognition modes 

into one totally integrated system provides for further learning capabilities 

plus a high degree of man'machine  interaction. 

4. The  use of a two-dimensional  grammar in man/machine interaction would 
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allow the user to define grammar rules without needing an extensive 

knowledge of the system. A recent Ph.D. Thesis by T.A. Standish45 

has   indicated an approach to this problem. 

5. The use of syntactic analysis to allow dynamic pictures to be generated 

has unlimited applications, 

6. Without a doubt, the most sophisticated extension is the ability to operate 

with figures which contain informulion concerning depth. The quantum 

jump from two to three dimensic n: would produce problems manyfold, 

but if pattern recognition is to be of any truly significant value, these 

problems must be tackled and solved. 

7.2   ADVANTAGES OF THE SYNTAX-DIRECTED MODEL 

The 

briefly by 

1. 

3. 

4. 

5. 

8. 

9. 

advantages of the general syntax-directed model for pattern analysis can be described 

the following points; 

What appears to be the strongest point of syntax-directed analysis is its 

ability to analyze an arbitrarily complex pattern. The ease with which 

recursiveness can be placed within the grammar allows an infinite number 

of variations in the input patterns to be identified. 

The ability to analyze arbitrarily complex figures indicates a high degree 

of abstractness may be represented by the grammar, allowing a wide range 

of classes to be defined by the giammar. 

The use of the grammar allows detailed distinctions to be made as fine 

as  desired. 

The   use  of a  grammar which  decomposes  a pattern  into  its   simpler con- 

catenated parts provides not only the name of the pattern but a structural 

description which efficiently represents the pattern. 

The descriptive power of the grammar provides the ability to determine 

topological equivalence among patterns in addition to providing a basis 

upon which the semantic analysis can be made. 

The  consideration of graphics  displays  which have dynamic capabilities 

is   provided   an   interesting   approach   by   the   syntax-directed   analysis   of 

figures.      Because   the   topological   features   of  the   figure   are  available, 

it  can  be  readily  translated  by  translating  any   single   constituent of the 

figure. 

The use of the topological features to represent a figure   is an extremely 

efficient manner in which to store pictorial data.    Rather than store all of 

the   digitized   points,   the   name   of  a   higher   level   constituent,   such as 

triangle,   la  stored along with  its   reference point.    This  reference point 

and  the  name  of the   constituent  completely  determine  the   set of points 

which comprise the   constituent. 

Also because the topological features are available and hence, the con- 

stituents of the figure are related, additions to the figure may be made 

by essentially augmenting the structural description of the figure without 

altering the already existing structural description. 

The use of a grammar allows the syntax-directed analysis to be invariant 

under linear displacement and size. 
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10. The   grammar   is  easily  extendable   and may  be   altered  with  no ramifi- 

cations in most eases. 

11. The efficacy by which the grammar may be extended provides an oppor- 

tunity to add sophisticated learning techniques to the syntax-directed 

models. 

12. A further advantage of the ease by which the grammar may be changed 

allows for a wider range of patterns to be recognized without large 

changes in the syntactic and semantic components. 

13. A strong factor which has just begun to be utilized is the ability of the 

grammar to operate as either a generator or recognizer of patterns. This 

allows for a high degree of man machine internct'an without a great deal 

of overlapping operators. 

14. The ability of the syntax-directed pattern recognizer to operate in a 

parallel mode may yet prove to be its strongest point. Using a top-down 

strategy various alternatives may be considered simultaneously by using 

a grammar. This should prove to be an enormous time saving factor and 

also serves as a check for errors in the identification process. 

15. Because the syntax-directed analysis processes all the information in 

an organized and meaningful way, both local and distant Gestalt qualities 

are obtained. Thif is particularly appealing to psychologists and physio- 

logists who are r versing the normal research behavior by studying the 

techniques used in computer programs to hypothesize about the workings 

of the human conceptual and physical processes. 

7.3   DISADVANTAGES OF THE SYNTAX-DIRECTED MODEL 

The disadvantages of such a model can be described by the following points 

1. Not only the strength, but also the weakness of the model lies in the 

grammar. The choice of primitives, syntactic relations, and higher 

level constituents to be formed essentially distinguishes one grammar 

from another. This choice is critical and for syntactic analysis to reach 

any degree of sophistication, a formalization for this choice must be 

developed. 

2. What   may   prove   to   be   a  major   weakness   of   syntactic   analysis   is  the 

multiple   parsings   which   are   obtainable   for   a   figure.     These  multiple 

parsings,   however,  do not  appear  to  carry the   same  degree of ambiguity 

that   they   do   in   natural   language   analysis   though   there   is   a  seemingly 

astronomical   number  of different   parsings   that   can   be  obtained   from  a 

figure   of only   reasonable   complexity.     If,   as   it   appears   likely,   all   of 

these    parsings    would   receive    the    same   semantic    interpretation,  then 

rather   than  process   all  of  them,   the   grammar  needs   to  be  developed to 
be   able   to semantically    interpret   any   one   of  these   parsings.     As  this 

solution is  infeasible, the  syntactic  analysis needs  to obtain the parsing 

in   a   normalized   manner   and   the   grammar   which   provides   the   semantic 

interpretation   is    then  designed  to  expect  the  parsing   in   this   normalized 

form.     If the  multiple parsings  of a  figure  do receive  different semantic 

interpretations   then  it  is necessary  to obtain  all  of them.     In  this case, 



to eliminate some of the parsings it is necessary to define higher level 

primitives which absorb structural attributes not significant in the pattern 
recognition process. (This is done in SAP by defining triangles, etc. 

to be higher level primitives upon which the semantic component oper- 
ates.) 

3. The problem of multiple parsings can be considered to create a semantic 
analysis problem. A second semantic analysis problem is the use of the 
structural descriptions by the semantic component grammar. The 
process is considered slow and not efficient because of the number of 
false starts by either the lop-down or bottom-up techniques. Parallel 
processing should be a solution to this. An alternative to the use of a 
grammar for the semantic analysis is the use of discrimination nets 
(decision trees). EPAM4*'47 and other models of this type48,49 have 
shown the discrimination net to be an effective decision maker and 

ai'^ptable to various learning and self-organizing algorithms. While a 

net does not represent recursion as well as a grammar, it has not been 

found that the   semantic component needs a highly recursive mechanism. 

4. It is possible that a grammar will not be able to resolve ambiguities as 
some ad hoc pattern recognition techniques. One difficulty which has 

been resolved but continues to jause some anxiety is ihe measuring of 
distances between edges. The following two examples should indicate 
the problem. (i) In the drawing below, the distance of a horizontal 
relation between primitive Rl and the constituent formed from primitives 

R2 and R3 is shown. A user might be tempted to consider the distance 
to be that between Rl and the left edge of R2. 

(ii)    A  possible difficulty  in   syntactic representation may  also  be  seen 
by the example 

R(l,4,8), R(2,8,4), *R4(TOP), R(3,8,4), *R1(LE4LT) 

gives 

R2 

R3 
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while 
R(l,4.8), (1(2,8,4), *R4(T0P), R(3.8,4), *R1{LE3LT) 

5. Because most complex graphical data has contextual constraints, the 

responsibility on formulating these constraints to avoid mislabeling 
ambiguous or anomalous figures lies on the person creating the grammar. 

6. The   choice   as   to   the   primitives   of   the   grammar   is   made   difficult by 
fact    that   the   primitives   are   essentially   contained    implicitly   in   the 

graphic data. 
7. The   division  between  hardware   and   software   is   a  point of detentior  in 

syntactic   analysis.      Syntactic   analysis    is   essentially   a   software  tool 
while    several   aspects   of   the   analysis   may   be   performed   better   by  a 

hardware   component.      An   example   is   the   syntactic   description   of a 

circle, which should perhaps be incorporated in the hardware. 

7.4   COMPARISON SUMMARY 

The above list of advantages and disadvantages of the syntax-directed model for pattern 
recognition should not be considered independent of the alternative methods for pattern recog- 
nition. Using Minskys50 classification of pattern recognition models as templet matching, 
property list matching, and articulate descriptions (syntactic analysis), the advantages and 
disadvantages may be summarized as follows: 

I.      Numbers   1,2,4,5,6,8.11,13,15   of   th-   list   of  advantages   of   the  syntax- 

directed model are advantages over the templet and property list matching 

techniques. 
II.      Numbers  3,7,9,10.12  of the   list of advantages  are  advantages  over only 

the templet matching technique. 
III.      Numbers    1,2,5,6   of   the   list   of   disadvantages   are   true  disadvantages 

compared to the templet and property matching techniques. 
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8-   SUMMARY AND CONCLUSION 

The   model   SAP   presented   in   this   report   is   ;i    study   in   the  methodology   of  the syntax- 

directed   pattern  recognition   and  generation  of pictures.     SAP  performs  a  many-to-one mapping 

bj   accepting pictorial data  as   input  and providing  as output   a  label  for the data.   The pictorial 

data  considered are two-dimensional pictures which contain no depth information. 

In  order  to operate   as   either  a  recognizer or generator of  pictures. SAP  is   composed  of 

two components,  a  syntactic  component and   a semantic component.    In  terms of pattern recog- 

nition,   the   syntactic   component   accepts   a  picture   L,   and   translates   it  to  a  set of strings of 

symbols    L*|    which   describes   the   picture's   structure.      Thus,   the   function   of   the  syntactic 

component  is   translating from  a  two-dimensional  language  L  to a one-dimensional language I.*. 

Ihe   syntactic   component   uses   a   lexicon,   a  modified  phrase   structure   grammar,   and   a   set of 

transformational rules to perform this translation. 

Ihe semantic component accepts structural description L*|, from the set of structural 

descriptions L*. of picture L, and attempts to apply a semantic interpretation, designated as 

Label,!, to the picture. First a set of abstractions of L, are obtained by various operations 

on the string of symbols 1.*^, to obtain a general classification of L,. The string L* , is then 

operated upon ^\ a context sensitive modified phrase structure grammar to receive a semantic 

interpretation. The recognition process is made in terms of the syntax and context of the 

figures which comprise the picture. 

SAC  also  has  the  facility  to  allow  a high degree of man  machine interaction.    A formal- 

ization   of   the   syntax   L*   allows   a   user   to   by-pass   the   syntactic   component   and  have the 

semantic   component   attempt   to   semantically   interpret   a   structural   description   which   he  has 

created   or  by-pass  the   semantic   component   to  generate  a picture   from  a  structural description 

w Inch he has created. 

Aspects of the syntactic component of SAP which appear particularly promising are the 

use oi transformation rules to add artificial lines to a picture and the combination of a lexicon 

and a set of 3-tuples to explicitly represent the implicit syntactic relations which form the topo- 

logical features of a figure. The language L*.though highly restricted, is capable of represent- 

ing the structural description of rather complex two-dimensional figures, which in turn allows 

the   user to readily interact with SAP. 

Similarly, significant contributions of the semantic component of SAP are the use ol an 

abstracting process to obtain a general classification of the figure and the ability to represent 

contextual constraints which exist between various levels of the constituents which comprise 

a figure or scene (the entire picture). These tools are deviations from the use of a phrase 

structure grammar to obtain the stiuctural description and semantic interpretations of a figure 

or scene. This deviation is the type of direction that must be taken in order to be able to 

syntactically analyze a complex two-dimensional picture. 

In conclusion, the ability of the syntax-directed model to be able to recognize or generate 

an arbitrarily complex figure, determine the topological equivalence among patterns, readily 

apply to dynamic displays, provide an efficient approach to storing a pictorial data base, and 

operate in a parallel mode indicates that such a model is a highly desirable method of operation 

for dealing with at least some types of pictorial data. Because the syntax-directed model does 

require a degree of formalization of the structure of the expected pictorial data and there is 

difficulty in dealing with multiple structural descriptions of a single figure, such a model may 

not   he   necessarily   applicable   to   all   cases   of  pattern   recognition   and  generation.    However. 
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the   ability   to  extend   the   syntax-directed  model   to  perform   inductive   and  deductive reasoning 

and  ultimately  to  process   three-dimensional  information   indicates  the   high degree    of sophis- 

tication which the syntax-directed model should  be expected to achieve. 

I 
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APPENDIX 9.1 

THE IMPLEMENTATION OF SAP 

Various aspects of SAP have been implemented on the LINC, the IBM 360 50, and the 
IBM 7072. The first implementation, Program I, was on the LINC. a small general purpose 
digital computer, to study the type of pictorial data chosen. Tie programming language used 
is   an assembly language, LAP6. 

Basically. Program I is composed of subroutines which aie able to display any of the 
geometric primitives for any specified dimensions. The location of the primitives on the screen 
is determined by giving a particular value to their reference point. The information is entered 
through the keyboard, and thus by entering a group of referenced primitives, any desired scene 

may be displayed on the storage scope. The actual notation of the referenced primitives 
is displayed on the LINC screen, allowing changes and deletions to be made as it is typed 

into the LINC. The photographs in Figures 9.1.1(a). 9.1.2(a), and 9.1.3(a) are examples of the 

graphic feedback. The horizon is obtained by referencing a rectangle of zero height. Also, 

the circles and ellipses are generated using sine and cosine tables, rather than approximated 
by eight directional lines, as described in Chapter 5. 

Program II, also on the LINC in LAP6, is a first implementation of L**. Thus, after a 
syntactic string, L*,| is typed into the keyboard, the graphic representation of the string is 

displayed on the storage scope. Using a single referenced primitive in the string, the reference 
points of the other primitives are obtained by the syntactic relations relating the primitives. 
This allows the user to see a display of the parsing he has just typed into the LINC. With 
only slight extension, this same procedure will provide information in the form of graphic 
displays  of the various abstractions performed on the  string by the semantic   component. 

The various options of the graphic syntactic language indicated in Chapter 4 are not 

allowed at the present time. While more efficient compiling routines could be written to code 
the input string, this topic is incidental to the development of SAP and has been ignored. 

In Figures 9.1,Kb/, 9.1.2(b), and 9.1.3(b) are examples of the input strings required to produce 
the scenes shown in Figures 9.1.1(a),9.1.2(a), and 9.1.3(a). It should be noted that the present 

implementation cannot yet fully generate these graphic scenes from their respective syntactic 

string.   The graphic scenes were produced by the referencing technique of Program I. 

A   program  on   the  IBM  360/50  hps  been written  in  LISP  1.5  to  perform   various manipu- 

lations  on   the   triplet   set  and   transform   the   triplet   set   into  a   Reverse   Polish   string.    The 

algorithm   which   obtains   the  Reverse   Polish   string   from   the   triplet   set   bypasses   an explicit 
formation of the syntax tree. 

In Figure 9.1.4 is a flow diagram of the program which obtains the Reverse Polish string 
from the triplet set.   Section 9.1.1 contains a listing of the program. 

The entire abstraction subcomponent has been programmed in FORTRAN on Ihc IBM 707,:. 
As indicated in Chapter 6. the program accepts as input a string which provides n siruclural 

description of a scene. The abstraction subcomponent segments the string mli individual 

figures and abstracts each figure, placing the figure into one of the seven |lttflfll classes 

listed on page 92. These classes are described in greater detail in Chapter G in Hie discussion 
of the abstracting component. 
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'Ibe Graphic Feedback of a Church Scene 
Figure 9.1.1(a) 

TR(1.10,15). R(l,10,15), *R1(LE), R(2.2,l), 
R(3.l,5), *R4, R(4,2,l), *R4, Tl(l,30,20). 
TI(2.7,10), *R5(BOT),*Rl, R{5,4,12), R(6,4.12), 
*R4, R(7,7,15), *R1(13), R(8,30,40), *R5(B0T), 
*R1, »R4(BOT). TL(I,10,15), R(9,10,15), *R1(LE), 
*R4(B0T), FJ1,17,5), *R3(TOP12UP), H(2,20.5), 
*R4(10,TOPIDN), E(T,7,30), R(10,2,4), *R1, 
*R4(2.BOT), E(4,7,30), R(ll,2,4), *R1, *R4(B0T), 
R(0,777,0,0,-350), *R1(RE8LT) 

The Syntactic String to Generate the Church Scene 
Figure 9.1.1(b) 
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The Graphic Feedback of a I arm Scene 
Figure 9.1.2(a) 

Ed,10,30), R(l,3,6), *I<1, K<:,6.6), 
11(1,27,14), *R5(M()T). R(3,20,15), «(4,20,15), 
*R4. R(S,27,20), ♦R5(BOT),*«l, *R3(4,BOT), 
In:.10.10). R(6,10.32), *R1. *R3(9,BOT), 
R(0,777,0,0,-100), *R1(RH8LT), E(2,30,7), 
*R1(10.RF) 

The Syntactic String to Generate the l;arm Scene 
Figure 9.1.2(b) 
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The Graphic Feedback of a House Scene 
Figure 9.1.3(a) 

€(1,32,32), R(l,3,l()), *R1, 11(1,25,6), 
R(2,3,5), U(3,4,12), *R4(l,BOT3UP), 
R(4,3,5), *R3(l,BOT3DN), (5,23,20), 
*R5(BOT), *R1, *R3(15,BOT), 
Ed,20,7), *RI(7,RT1()LT), 
R(0,777,0,0,-200), *R1(RT2LT) 

The Syntactic String to Generate the House Scene 
Figure 9.1.3(b) 
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Figure   9.1.4   A Flow Diagram of the Program which Obtains a Reverse Polish String From the Triplet Set 
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1. STORE 5.   BULBOUS 

2. HOUSE h.   OFFICE BLDG 
3. SILO 7.   UNICORN 

4. TREE 
The structural descriptions can be of any complexity, having both directional recursion 

or contained within recursion. Figure 9,1,5 contains a flow diagram of the abstracting program. 

Section ^.1.2 is a listing of the program. 

9.1,1      A   Listing  of  the   Program   ^hich  Obtains   a   Reverse Polish String  from   the Triplet Set 

DEFINE (( 
(REPOL(LAMBI)A(MAIN) 

(PROQCRPS STATE ARG X RFAM) 

(SETQ X (CAR MAIN» 
U   (COND(NULL ARC!) (SETQ ARCi(CONS(CAR X) NIL))) 

(T(SFTQ ARG (CONS ( GAR X) (GDR)ARG))))) 
V   (SETQ ARG (CONS (CADR X) ARG)) 

(CONDUNULL RPS) (SETQ RPS (CONS(CADDR X)NIL))) 
(T(SETQ RPS (CONS(CADDR X) RPS)))) 

(CONDUNULL STATE) (SETQ STATE(CONS 1 NIL))) 
(T(SETQ STATE (CONS 1 STATE)))) 

(SETQ MAIN(EFFACE X MAIN)) 
A   (COND(( NULL MAIN) (GO E)) (T (SETQ REAM MAIN))) 
B   (SETQ X (CAR REAM)) 

(COND((EQ(CAR ARGHCAR X» (00 V)) 
((EQ(CAR ARC.) (CADR X)) (GO U))(T(SETQ REAM(CDR REAM)))) 

(COND((NULL REAM) (GO E))(T(CiO B))) 
F   (SETQ RPS (CONS(CAR ARG) RPS)) 

(SETQ ARG (CDR ARG)) 
F   (SETQ STATE (C0NS(ADD1(CAR STATE))(CDR STATE))) 

(CONDMEQUAL (CAR STATE)3)(SETQ STATE(CDR STATE))) 

(T(00 A))) 
(COND((NOT(NULL STATE))(GO F))(T(PRINT RPS)))))) 
(EEFACE(LAMBDA(XX LL) 

(COND((NlJLL LL) NIL)((EQUAL XX (CAR LD) 
(CDR LD) (T(RPLACD   (LL(FFFACE XX (CDR LL)))))))))) 

9.1.2   A Listing of the Program Which Segments  and Abstracts a Figure 

DIMENSION INPUT (40()),NDATA (50,4) 
DIMENSION MINAB(1Ü),ISS(1,3),IABST(2()(),3),MAXAB(10) 

DIMENSION IAB(3) 
DIMENSION IIIOLD(3,3), IIITE (16) 

C        COMPILE THE STRUCTURAL DESCRIPTION STRING TO 
C        CODED TABULAR FORM 
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I 

I 

I 
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DO 8000 UKl.    1,10 
DO 41 .1    1,3 
DO 41 1    1.200 

41   lABSTUJ)   0 
READ (1,9049) ITITE 

9049   FORMAT (16A5) 
WRITE (2,9049) ITITE 

RKAD (1,9000) N 

9000   FORMAT (II) 
NN    N*S0 
RHAD( 1,9001) (INPUTd), 1= 1,NN) 

^001   FORMATCSOAl) 

WR1TE(2.9050) 
4050   FORMA 1(25110   STRUCTURAL DESCRIPTION) 

WRITE(2,9002) (INPUTd), 1    I.NN) 

9002   FORMAT(1H 11SA1) 
DO 5 1    l.NN 

5   INPUTd)    XABSFdNPUTU)) 

( 

C 

( 
( 

STRING WILL BK PUT IN ARRAY NDATA WITH 

CONSTITUENTS CODED 
TESTING LOR THE TYPE CONSTITUENT WHERE ALPHANUMERIC 
EQUIVALENTS ARE     79    R, 83    T, 63    C, 65 ~ E. 26   * 

QK.*«*»**»*****«********************************************** 

.1    0 

K    0 
9   .1    .1 t 1 

10 IFCINPUTU)-7900000000) 20,100.20 
20 1F(IHPUT(J)-8300000000) 30,200.30 
30 1F(INPUT(J)-6300000000) 40,300,40 

40 IFdNPUTU)-6500000000) 50,400,50 
50   1F(1NPUT(.I) - 2600000000) 8000,500,8000 

^'+ + * + **** + *** ♦He********************************************** 

RECTANGLE CODED AS 9 
C********* +*+♦+**♦»*****************+*******+*****+**♦******* 

100   K    K ♦ 1 
L    1 
NDATA(K,L)    9 

(;+****+**♦**+*+*+****♦****************+**♦***+********♦****+* 

( TESTING FOR DELIMITERS WHERE, 
C 36    (.  16    ), 35    ,, 90    0. 91     1,... 
(■■ + »♦** + **♦** i + ****+***+********♦*♦+**+****+*****+*********+** 

101 .1    .1 t 1 
102 IFdNPUTU)- 3600000000) 103,101,103 

103 IFdNPUTU)-1600000000) 104,150,104 
104 IFdNPUTU)-3500000000) 105.101,105 
105 IFdNPUTU)-9000000000) 8000,106,106 
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106 1STAT = Ü 
(•»**********♦***+***♦**♦****♦****♦♦****+**♦*♦*********♦**♦*♦* 

C CODING NUMBERS TO INTEGER EORM 
p****************************************************♦♦*♦**♦* 

107 NUM = (INPUT(J)   100000ÜÜ0)-9Ü 

J = J • 1 

IFUNPUTU)-9000000000) 1 10,108,108 
108 NUM = NUM*10+((INPUT(J)   1000000000)-90) 

109 J = J + 1 
110 L    L ■ 1 

NDATA(K,L) = NUM 
IFdSTAT) 102.102,510 

^'****♦************♦********* + ♦* + * + + + *♦*♦*♦******************* 

C TESTING FOR TYPE OF TRIANGLE WHERE. 

C 69    I. 79    R. 73 = L, 64    D 
r'************** + ******** + *******************************♦**** 

200   J = J + 1 
IF(INPUT)J)-6900000000) 210.260,210 

210   IF(INPUT)J)-7900000000) 220,235.220 
220   IFdNPUTU)-7300000000) 8000,248,8000 

^-+ ******** + ******♦*****♦♦*******************♦**************** 

C   TR CODED AS 11 
C   TRD CODED AS 12 
r' + A*******************************+ *** + * + + + * + *** + ** + * + + + + * ^■* + 

23 5   J =J - 1 

K    K     1 

i.     1 

IFdNPUTU) -6400000000) 237,236,237 

236 NDATA(K.L)    12 

GO TO 101 

237 NDATA(K.L)    11 

'GO TO 102 
p** ************** +*.(•*.************************ + *** ************ 

( 11. CODED AS 13 

C I I.I) ( 01)1.1) AS 14 
(■******i.****^****** + * + **** + ******-t< + ** *************** ********* 

248    J     .1 •  ! 

K    k ■ 1 

I.     1 

IFdNPI   Ml) - 6400000000) 250,249,250 

24l)   NDATAfK.U    14 

GO   I O  10! 

250   NDAI AfK I.)     13 

GO   I O 102 
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r**!»»!»********»**»********** **************** ***************** 

C ISOSCELES TRIANGLE CODED AS 10 
^*♦♦♦*******♦♦******♦*♦♦*♦♦*************<♦**♦*******♦♦******* 

260   K = K f 1 

L=l 

NDATA(K.L)= 10 

00 TO 101 
{-■**» + *******♦******♦*******♦*********♦♦** + *** + *************** 

C        CIRCLE CODED AS 7 
(-»***********♦♦****♦♦***********♦♦*♦***♦♦♦♦************♦***** 

300   K = K + 1 

L-   1 
NDATA(K,L)    7 

GO TO 101 
(-♦*****************♦******♦**♦*****************♦**♦********** 

C ELLIPSE CODED AS 8 
(-♦*****♦♦*******♦***♦++**♦*******♦*♦*♦*+♦**♦*********♦******* 

400   K - K t 1 

L-l 

NDATA(K,L) =8 

GO TO 101 
(-*♦**♦♦+*♦♦*+**»*******+*********♦*******♦*************♦***** 

C TESTING EOR SYNTACTIC RELATIONS 

C RELATIONS ARE CODED AS THEIR REPRESENTATIVE INTEGER 
r-***♦*♦♦ + **************************************************** 

1 50       i }    >    \ 
IFUNPUTO) - 3500000000) 800,9,800 

500   J    J + 1 
IF(INPUT(J) - 7900000000) 8000,505.8000 

505 J    J t 1 
IFdNPUKJ)-9000000000) 8000,8000,506 

506 K    K 1 1 

L    1 
NDATA(K,L)    (INPUT(J)/100000000) - 90 

J    J . 1 
IFUNPUTU) - 3600000000) 8000,507,8000 

507 .1    J . 1 
IF(1NPUTU)~9000000000) 8000,508,508 

50«   ISTAT    1 

GO TO 107 
510 ||(INPUT(J)-1600000000) 511,150,511 

511 J    Jil 
GO TO 510 

£•♦♦♦♦♦♦*♦♦******************♦*♦********♦********************* 

C        CALCULATING AREA OF PRIMITIVES AND STORING THE 

C TABLE IN ARRAY IABST 
(■■jt,*********** ♦♦He********************************************* 
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800   1=1 
MlNAB(l)- 1 
MAX = K 

DO 808 K= I, MAX 

IABST(K,1) = NDATA(K,1) 
IABST(K,2) = NDATA(K,2) 
lF(NDATA(K,l)-7) 808,803,804 

803 RAD = NDATA(K,3)/2 
IABST(K,3)-3,14*RAD**2 

GO TO 808 
804 lF(NDATA{K.l)-9) 803,805,807 
805 1ABST(K.3) - NDATA(K,3)*NDATA(K,4) 

CiO TO 808 
807 IABST(K,3) = NDATA(K,3)*NDATA(K,4)/2 

808 CONTINUE 
r-******+ ****♦***** + + ******+********************************** 

C TABULAR FORM OF STRING 
f************************ ************************************ 

WR1TE(2,9060) 
9060 FORMAT(42H0      TABULAR FORM OF STRUCTURAL DESCRIPTION) 

WRITE(2,9061) 
9061 FORMAT(47H PRIMITIVE TYPE NUMBER A 

XREA) 
WRITE(2.666)((IABST(NI,NJ),NJ = 1,3),NI=1,K) 

666   FORMATdH   3115) 
r-************************************************************ 

C THE REMAINDER OF THE PROGRAM ABSTRACTS AND LABELS 
C THE FIGURE WHILE EACH FIGURE IS SEGMENTED FROM 
C THE ENTIRE SYNTACTIC STRING 
^************************************************************ 

MAXABUUK 
r-************************************************************ 

C TESTING FOR RELATION INDICATING NONCONTIGUITY 
r"!h *********************************************************** 

813 IF(IABST(K,l)-4) 809,809,810 
809 IF(IABST(K,2)) 821,821,812 
810 IF(lABST(K,l)-6) 811,811,900 
812 ITlT-l 
692   K=K-1 

IF(K-MINAB(I)) 8000,690,690 
r-************************************************************ 

C        COMBINING TWO INDENTIFIED FIGURES WHERE THE 
C        IDENTIFIED FIGURES ARE LABELED 20 
(_■************************************************************ 

690 IF(IABST(K,l)-20) 814,691,814 

691 ITIT ITIT f 1 

IF(lTIT-2) 692,692,693 " 
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693 ISS(1,1) = 20 

GO TO 694 
(•***+*****»***************+********♦********+♦*+************* 

C TESTING I OR   SSS,SSS,SYNTACTIC RELATION 

821   IT=1 

815 K = K- 1 

818 IF(K-MINAB(I)) 8000,816,816 

816 IF(IABSm.l)-6) 817,817,825 

817 IF(IABST(K,l)-5) 814,811,811 

811 K = K-1 

IF(IABST(K,l)-6) 817,817,820 

820 IF(1ABST(K,1)-15) 823,900,823 

823 K = K-1 

IF(IABST(K,1)-15) 819,900,693 

819 IF(IABST(K,l)-6)   817,817,900 

825 IFUT     1)   900,826,850 

826 IT    2 

GO TO 815 
^ + i|c** + + + + 1;'(!>t:*>H<++j(<!);**>|<****************** ************** ******* 

C ABSTRACTING TWO CONSTITUENTS TO A NEW CONSTITUENT 

C LABELED 15 

C ARRAY ISS CONTAINS NEW CONSTITUENT 
^'* + *;*! + * + ***************************************** ************ 

850 1SS(1,1)-15 

694 !F(IABST(K,3)-IABST(K t^ 1,3)   855,855,857 

855   IF(IABST(K + 1,1)-15)   852,851,851 

851 ISS(1,2) = IABST(K+1,:) 

GO TO 861 

852 ISS{1,2) = IABST(K+1,1) 

GO TO 861 

857 IF(IABST(K,1)-15)   854,853,853 

853 !SS(1,2) = IABST(K,2) 

GO TO 861 

854 ISS(1,2)=IABST(K,1) 

861   IF(IABST(K + 2,l)-5)   858,863,863 

858 ISS(1,3)=IABST(K,3)+ IABST(K t 1,3) 

GO TO 864 

863 ISSn,3)=IABST(K+1,3) 
^*******************************♦***♦♦********♦********♦+*♦*♦ 

C ARRAY IHOLD CONTAINS CONSTITUENTS WHICH WERE 

C USED IN THE MOST RECENT ABSTRACTION 
^'**♦♦************ + ********♦*****♦***♦***********♦*****»*♦*♦*♦ 

864 IM = 0 

KOOK = K f 2 

DO 867   1IK = K, KOOK 

IM = IM+1 
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DO 867   JJ = 1,3 
867   IHOLDUM.JJUIABSTUIK.JJ) 

C CONSTITUENTS USED IN THE ABSTRACTION ARE ZEROED OUT 

C AND REMOVED FROM THE NEW TABLE 

1ABST(K,1) = 0 
IABST(K+1,1) = 0 

DO 856 J = 1,3 
856   IABST(K+2>J) = 1SS(1J) 

7098   1STAR = M1NAB(I) 
1FIN = MAXAB{I) 

1 = 1+1 
MINAB(I) = IF1N+ I 
NOM = IFIN 
DO 875 J = 1STAR,1FIN 
IFdABSTU.D) 8000,875,859 

859 NOM = NOM+l 
DO 860 JJ = 1,3 

860 IABST(NOM.JJ) = lABST(J,JJ) 

875   CONTINUE 
c************************************************************ 

C WRITE CUT OF RESULTS OF LAST ABSTRACTION 
c************************************************************ 

MM = M1NAB(I) 

1ABN0 = I- 1 
WRITE(2. 8011)   1ABNO 

8011   FORMAT(22H0   ABSTRACTION NUMBER,15) 
WRITE(2,880)((IABST(M,N),N=1,3), M = MM, NOM) 

880   FORMAT (1H 3115) 
MAXAB(I) = NOM 

IT = 0 
GO TO 813 

c***************+******************************************** 

C FIGURES ARE CLASSIFIED BY THEIR ABSTRACTED STRINGS 
C ACCORDING TO THE RELATIVE AREA AND RELATIONS 

C BETWEEN THE PRIMITIVES 
c*#********************************************************** 

900 IF(IABST(K,l)-20) 899,8000,899 

899 IF(IABST(K,1)-15) 927,905,927 

927 IF(IABST(K,l)-9) 904,974,904 
904 IF(IABST(K,1)-10)   8989,936,8989 
905 IF(lHOLD(l,l)-15)   944.945.945 

944 IABl = lHOLD(l,l) 
GO TO 906 

945 IABl = IHOLD(l,2) 
906 IF(1H0LD(2,1)-15)   947,948,948 , 

I 
I 
I 
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I 
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947 IAB2 = IHOLD(2,l) 

GO TO 970 

948 IAB2-1H0LD(2,2) 

970   lF(IABl-9)   901,915,901 

901 lF(IABl-7)   902,920,902 

902 lF(IABl-8)   903.920.903 
903 IFUABl-lO)   8989,925,8989 
915 IF(!AB2-9)   8989,916,8989 

916 IF(IHOLD(3.1)-5)   976,975,976 
,>74   1ABST(K,2)-IABST(K.1) 
975 WRITE (2,977) 

977   FORMAT(16H FIGUR'i IS STORi 
GO TO 999 

976 WRITF(2,917) 

917 FORMAT{23H FIGURE IS OFFICE BLDG.) 
GO TO 999 

920 lF(IAB2-9)   8989,921,8989 

921 WRITE(2,922) 
922 FORMAT(18H FIGURE IS BULBOUS) 

GO TO 999 
925 IF(IAB2-9)   8989,926,8989 
926 IF(IHOLD(3,l)-1)   8989,930,8989 

930 IF(3*mOLD(l,3)-IHOLD(2.3))   940,931,931 

931 IF(IHOLD(1.3)-2*IHOLD(2.3))   933,936,936 
933   WRITE (2,935) 

935 FORMAT (16H FIGURE IS HOUSE) 
GO TO 999 

936 WRITE (2,937) 

937 FORMAT (15H FIGURE IS TREE.) 
GO TO 999 

940 WRITE (2,941) 

941 FORMAT (12H FIGURE IS SILO TYPE) 
GO TO 999 

8989 WRITE (2,8990) 

8990 FORMAT (18H FIGURE IS UNICORN) 
(^ **** + **♦*** + + *♦*********♦************* + **♦****** + *■* + ***** + + * 

C A CLASSIFIED FIGURE IS CODED 20 

999   IABST(K,!) = 20 

K-MAXAB(I) 
GO TO 813 

8000   CONTINUE 

END 
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APPENDIX 9.2 

A LISTING OF THE RULES OF THE SYNTACTIC AND SEMANTIC COMPONENTS 

The   following pages   contain   a  listing  of  the  rules   which are   used  in  SAP.    The rules 
are presented in the order listed below. 

1. The Syntactic  Component Clrammar K 1*. 

2. The Transformation Rules for Forming Artificial Lines. 
3. The Transformation Rules for the Concatenation of Lines. 
4. The Lexicon. 

5. The Transformation Rules for the Triplet Set. 
6. The Grammar K2* for L*. 

7. I he First Level of the Semantic Component Grammar K3*. 
8. The Constraint Matrices for First Level of K3*. 

9. The Second Level of the Semantic Component Grammar K3*. 
10.   The Constraint Matrices for the Second Level of K3*. 

1.   Syntactic Component Kl* Grammar: 

■ LH(x.x)"' :-vPH(x)-- 

<LH(y,.x)>;;=<PH(y)-><;LH(z,x)H vLH(y,z)><PH(x) ■ 
<Lv(x.x)^::=<Pv(x)^ 

<Lv(y,x)>::=<-Pv(y)><Lv(z,x)^ | <.L v{y,z) >-.Pv (x)> 
;L[)R(x,x)>::-<PDR(x)^ 

<LB||(y,x)>::=<P0||(y)><LBR(z1x)>|<LDR(y.z)><pBR{x)> 
<LBL(x.x)>::=<PDL(x)> 

^LDL(y,x)>:;-<PDL(yh<LDL{z,x) >j<LDL(y,z)^<PDL(x). 
<R(w,h,v^::=<;LH(vi,vi)^<Lv(vi,vk).. <LH(v|(,v|)> 

<Lv(v.,vlh/RECTANGLE 
<TI(w,h,v)"-::-<LH(vi,vj)><LDR(vi,vk)> 

<LDL(vk,vi)>/ ISOSCELES TRIANGLE 

<.TR(w,h.v)^::--<LDR(vi,vk)><Lv(v.,vk)^ 
<^LH(v.,v.)^/ RIGHT TRIANGLE 

<TL(w,h,v)^::=<LDL(vk.vj)><LH(vi,vj)N 

<Lv(v.,vk)>/LEFT TRIANGLE 
<TRD(w,h,v)>;:=<LDL(vi,vk)><LH(vi,vi)> 

<Lv(vk,vi)>/ RIGHT TRIANGLE DOWN 
<TLD(w,h,v)>;:=<LDR(vk,vi)-.<LH(vi,v.)> 

<Lv(vk,vi)^/LEFT TRIANGLE DOWN 

<C(w,h)v)>::=<LH(vl,vf)><LeL(v1)vfc)><Lv(V|)vk)> 
^LDR(vm,v|)^sLH(vn,vm)-<LDL(vp,vn)- 

<Lv(vp,vr)^<LDR(vr,v.)-/CIRCLE 
<E(w1h,v)>::=<LM(v|,v1)><L0L(v|)vk)><Lv(V|,vk)> 

<LDR<vn,,v|)-<LH(vn,vm)^vLDL(vp,vn). 

<Lv(vp,vf)><LDR(vMvt)>/ELLIPSE 
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2.   Transformation Rules tor Forming Artificial Lines; 

LH,Vi,Vi,.Lv(v > {S.'S:^:-'} 

v       I'm 

Mvpv,) .Lp^.v,)  ► (l),(2).LH(vltl(v|) 

Lv(v..v.), LDR(v..vk)  ► (1),(2). LH(vrvm) 

Mv^v,) , LDR(vt,vk)  ► (1) , (2) , LH(v.,vm) 

LH^I^^ ' LDL(vi'vk)  ► (1) , (2) , LyCvJ.Vj) 
LH<vi-vi) . LDL<vl<'Vi)  ► <1)^2) ' LHCV,,,^,) 
LH(vi'Vi) • LDRCV^V,)  ^ (1) ,(2) .LyCv,,.^,) 

LD^V^V,) , Lv(vilvk)  ^ (1) ,(2) . LBL^.V,) 

LßR^.v,) , LyCvj.v,,)  * (1) , (2) , LDR(vi,vrn) 

LDR(vi,vi) , Ly^pv,,)  ¥■ (I) , (2) , LH(vm,vi) 
LDL<vi.vj) - Lv(vi,vk)  » (1) , (2) , LH^.V,,) 

3.   Transformation Rules for the Concatenation of Lines; 

L1(v.,vj),L,(v.,vk),Lm(vj,vn)  ►L'1(vi,vk),(3) 

L1(v.,vi),L)(vi,vk),Lm(vn,vi)  ►L'1(v1(vk),(3) 

4.   The Lexicon; 

CIRCLE   ;    C(n1,n2n3) 

Requirements   ;   XLENGTH(LH(vi,vi))=XLENGTH(Lv(v|,vk))= 

XLENGTH(LH(vn,vm))=YLENGTH(Lv(vp,vr)) 

XLENGTH(LDL(vi,vk))=XLENGTH(LDR(vm,v|))= 

XLENGTH(LDL(vp,vn))=XLENGTH(LDR(vr,v.))= 

YLENGTH;LDL(vi,vk))=YLENGTH(LDR(vm,V|))= 

YLENGTH(LDL(vp,vn))=YLENGTH(LDR(vr,vi)) 
Assignments   ;   n, = CCOUNT + 1 

n 
2 = XLENGTH(LH{v.,vj))+2(XLENGTH(LDL(v.,vk))) 

n3 = n2 

and, 
B0T = LH(vn,vm) 
TOP = LH(v.,Vi) 

LE    =  Lv(vp,vr) 

RE      =  Ly(V|,V|,) 
reference point = 

/Vk  -  Vr   '   V,.  Vi  -   Vn+   V„\ 
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ELL1PSE :     E(n,,n2,n3) 
Requirements:     XLENOTH(LH(v|,v1))={LH(vn,vm)) 

YLENOTH(Lv(vllvk))=YLENOTH(Lv(vp,vr)) 

XLENOTH^L0L(v|,vk»=XLENGTH{LDR(vm,V|))= 
XLENGTH(LDL(vp,vn))=XLliNOTH(L0R(vr(vl)) 
YLENGTH(LDL  (v1)vk))=YLENGTH(L|j R(vm ,V|))= 

YLENGTH(LDU(vp,vn))=YLENGTH(LBR(vf,vl)) 

Assignments  ;    n,     ECOUNT <   1 
n2    XLENGTHaH^pV,))-» 2{XLENGTH(LDU(v|,v1())) 
n3     "2 
and, 
BOT=LH(vn,vJ 
TOP    L^v^v.) 
LE   = Lv(vp!vr) 
RH   -  Lv(V|.vk) 
reference point =     vk _ v, +   vr> v, - vn   i  vn 

RECTANGLE:      Rd^.nj.iij) 
Requirements:     XLENGTHiL^v^v.)) = XLENGTH(LH(vk,v|)) 

YLENGTH(Lv(v|)vk))= YLENGTIl(Lv(vi,V|)) 

Assignments :     n,      RCOUNT '   1 
n2      XLHNGTH(LH(vj,v|)) 
n3     YLENGTH(Lv(V|,vk)) 
and. 

BOT     L^Vi.Vj) 

TOP. L^v^.v,) 

LR        Lv(v.,vk) 

RE Lv(v(,V|) 
reference point     Vj 

ISOSCELES TRIANGLE :     TKn^nj.nj) 
Requirements :     XLENGTH(LD „(v^v,,))   XLENGTH(LDL(vk,v|)) 

Assignments: n, -TICOUNTt   1 
n2    XLENGTHCLHlVi.v 

1» 
113    YLENGTHCLBRCV, ,vk)) 
and, 

BOX     LM^VI.V,) n       'I 

TOP- vk 

LE    -v, 
RE    = v. 
reference point = v. 



I 
i RIGHT TRIANGLE 

Requirenienls 
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1 K (n ,. n 2, n 3) 

n, - TRCOUNTf  1 
n2    XLENGTHaH^pV,)) 

113    YLENOTH(Lv(v,,vk)) 
and. 

HOT     LH(vl,v|) 

TOP     vfc 

LE       v. 

reference point = v 

I 
I 

I 

RIGHT TRIANGLE DOWN 
Requirements 
Assignments 

"HPT TRIANGLE- 

Requirements 
Assignments 

TRD(n],n2,n3) 

</> 
n, - TRDCOUNT .  I 

n2     XLP.NGTH(LH(vi,vj)) 

n3    YLENGTH(Lv(vk,V|)) 
and, 

ROT      vk 

TOP = LH(v,,v|) 

LE        v. 

RL       ^LyCVfc.V,) 
reference point - v 

TL(n, ,n2,n3) 

«/> 
n, -TLCOUNT t 1 
n2-=  XLENGTHCLHCV^V,)) 

n3 =   YLENGTll(Lv(vl,vk)) 

and, 

BOT     [^(vj.Vj) 
TOP - vk 

LE    - Lv(v.,vk) 
RE     - v. 
reference point    v. 

LEFT TRIANGLE DOWN 
Requirements 

Assignments 

TLD(n),n2,n3) 

n,= TLDCOUNT * I 
n2- XLENOTH(LH(vt,V|)) 
nj- YLENGTH(Lv(vk,vi)) 
and, 

BOT = yk 

TOP = L^fv.v.) n      1      1 
LE    - v, 

RE    = Lv(vk,v.) 
reference point = \i 
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ON TOP OF 
Reiiuirement 
Assignments 

X,Y,*Rl(n1,n2
nM3nn4) 

X(BOT)ffl Y(TOP) 

11,= 0 

n2= LE 
if XCOORDCX, p) 
then, 

'LE 

TO RIGHT OF 
Requirement 
Assignments 

XCOORI)(YLE) 
then, 

n3 = XCOORD(XL E) - XCOORD(YL E) 

n4     RT 
if XCOORD(XL E) > XCOORD(YLE) 

then, 
nj - XCOORD(YLE) - XCOORD(XLE) 

n4= LT 

X,Y,*R3 (n1,n2nn3nn4) 
X(LE) Hi Y(RE) 

«,= 0 

n2= BOT 
of YCOORD(XBOT)   - YCOORD(YB0T) 

then, 
nj    YCOORD(YB0T) - YCOORD(XB0T) 

n4 -DN 
if YCOORD(YBOT) , YCOORD(XBOT) 

then, 

n3= YCOORD(XBOT) - YCOORD(YBOT) 

n4= UP 

X,Y,*R5(n1,n2
nn3nn4,n5

nn6
nn7) 

X(l.)ffl Yd,) 

n, =0 

nj = LE 

n3= XCOORD(XLE) - XCOORD(YLE) 
n4.RT 

n5 = BOT 
n6 = YCOORD(XBOT) - YCOORD(YB0T) 

n7 = UP 

5.   Transformation Rules for Triplet Set: 

Transformation Rules for Isolated Primitives 
(a./3,*R5),(y,0,0)  ►(!),( y,/3,*R5) 
(a,/3,*Ri),(y,0,0)    KD.Ca.y^RS) 

(a,0,0),(^,0,0)     >{ß,a,*n5) 

(a,/3,*R5),(y,S,*Ri )     ►(l))(2).(y,ß1*R5) 

CONTAINED WITHIN 
Requirement 
Assignments 
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Transformation Rules for Missing Relations 

(a./3,*Ri),(a.>',*Ri) ► (l),(2),{/3.y,*Rj) 

(a,ß,*Ri),(y,ß.*Ri) ► ( 1),(2).(<M .*Rj) 

where i   -•  j. 

Transformation Rules for Inconsistent Relations 

(a,ß,*Ri))(/3,y.*R5).(a.>',*Ri) ►0.(3) 

(j8.a.*Ri),(ß,y,*R5),(y.a,*Ri) »(2),(33 

(a,i3,*R5),(a,y,*Ri))(/315,*Ri),(y,S,*R5) ►(l)/,3).(4) 

(|3,a,(R5),(j8,y,*R5),(y,a,*R5) »(2).(3) 

6.   The Grammar K2* for L*: 

< name cir •; 

■ name e 1 lip ■; 
■ name rect ■: 

■name iso8>: 

<name n in  ; 

- name rt tridown •: 

■ name 1ft tri ■: 

- name 1ft tridown ■: 
zero •; 

• number •; 

integer •: 

num type ■; 

<horizontal dimension ■: 
<vertical dimension>; 

-primitive argument   ■: 

<xcoord 

■:y coord 

refpt 

■reference primitive argument-: 

<circle>: 

•:ellipse>;: = 

rectangle 

isosceles triangle 

right triangle- 

• right triangle down 

C 

E 

R 

Tl 

TR 

= TRD 

Tl- 

TLD 

= 0 

= Il2i3l4:5!6l7i8|9 

- <number - j < zero ■     number ■   -integer ■ 

- integer - 

= <integer ■ 
= <integer 

= <numtype>,«horizontal dimensions 

<vertical dimension^ 

<integer> 
■integer • 

■ xcootd,>,<ycoord ■ 
■ zero -.horizontal dimension-, 

^vertical dimension>,<refpt^ 

<name cir> ( <primitive argument-)! 

•name cir> («reference primitive argument') 

<name ellip>(vprimitive argument"-)! 

■'name ellip-(-reference primitive argument.;-) 

■ name rect •( «primitive arguments 

name rect-(-.reference primitive argument>) 

name isos •(■ primitive arguinent"0| 

• name   isos  (reference primitive argument^) 

name rl tri •(  primitive argument^)| 

■ name rt In   (     elerence primitive argument^) 

name rl tridown ■'   , 'imilivc argument ■)! 
name rl tridown •(■ reference primitive argument^) 
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■ lel't triangle 

left triangle down 

■primitive 

.name sr ■ 

<nisr'> 

■ vedg ■ 

hedg • 

vinsp- 

<vdir> 
■■.hdir ■ 

wrelpos^ 

<hrelpos> 

<argvsr> 

<arghsr> 

vvertical relation 1>: 

<vertical relation 2>; 

.horizontal relation J^: 

.horizontal relation 4N; 

■.vertical relation N; 

<horizontal relation^: 

«.directional relation>; 

<argcwsr>: 

<contained within relation 5>: 

<contained within relation6">: 

< contained within relation»: 

'syntactic relation: 

<hsym>: 

<vsyni--: 

<symf>: 

<rps; 

<mbt-; 

<nur •; 

<rpf^: 

;;= ■.name 1ft tri>(<pnmitive argument ) 

■.name lit tri('reference primitive argument^) 

;;=   .name Ift tridown >(';primitive argument)] 

-name Ift tridov/n>(':reference primitive argument>) 

:: - vrectangle • i '.isosceles   triangle • 

■right triangle ■ 1 -right triangle down> j 

<le ft triangle ■ | <left triangle down"- | 

<circle> I <ellipse • 

*R 

: = <integer> 
:= TOP| BOT |HC 
;    LEiRE|VC 
: = ■•-integer:- 

;= UP|DN 

;= LTlRT 

;= <vedg^'.mspN <.vdir- 

: = <hedg> vmsp- <,hdir"> 

: = <mst>,<hfelpos> 
: = vmsr~>,<vrelpos> 

;= -.name srM(<argvsrN) 

= vname sr>2(<argvsrN) 

;-   '.name sr>3(<arghsr-) 

: = '.name sr"-4(varghsr^) 

=    vertical relation 1> | 

<vertical relation 2N 

: =-^horizontal relation 1> | 

<horizontal relation 2^ 

: = <vertical relation > | 

<horizontal relation^ 

= <zero^,<vreipos>,<hrelpos> | 

<zero>)<hrelpos>,<vrelpo8> 
= <name sr>5(<argcwsr>) 

= <name sr>6(<argcwsr>) 

= <contained within relation 5> | 

<contained within relation 6> 

= <vertical relation> | 

vhorizontal relational 

< contained within relation> 

♦MSYM 

-*VSYM 

- <h8ym> ' hdir^- | '.vsym"- <vdir> 

♦RP 

= <integer> 

= <.integer - 

= <rp> <mbr> <hdir> < nur> j 

<rp • '.mbr> <vdir^ ^nur"- 

i 

i 

i 

i 
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I 

I 

I 

<def8f> 
<rote • 

<rotef> 
unary syntactic function > 

binary syntactic function^- 
< s s s > 
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<els^:: = *E1.S 
.rds   ..     *RDS 

<elrdfN;: = -els • ^ nuin> i <rds ^ snum» 
<defs>::= *DEFS 

<deri>:;= *DEF<integer- 

= <defi> <•••> <defs~> 
=*ROTE 

= <rote> <integer> 
= <symf> ! <rpf> | <elrdf^ | <rotef > 

= <defsf> 
- <priniitive s vprimitive"-<.synlactic relation> 

ssss - <primitive~><syntactic relation> | 

• primitive><sss>^syntactic relation> | 
<sss><sss> 'Csyntactic relation^ 

<sss><unary syntactic function"-1 

DEFi <sss-- DEES 

<ss>:: = <sss''' 

7.  The First Level of the Semantic Component Grammar K3* 

<figufe>:; = <hou8e type> | <silo type ■ i 
<store type"- | <tree type> \ 

vbulbous type> I <office type"- 
• house type">;; = <doghouse"' | <shed> 1 <house> | 

<church> i <garage> | <barn^ \ 
<school> j <barbershop" 

<silo type--:; = <silo type> 1 <Iighthouse> | 
sbouy"- j <,tower 

<tiee type"-;; = <tree^ [ -tent • \ <radio> 1 <toweo 
vstore type-;;     <store"- 

■^office type "-;; = <office bldg> | <flag pole • 
bulbous type";; -    water tower" | -.barber pole - | 

<tree"> | vlamppost"- [ <sign^ 

<8hed>;:= <facade 1"-/(1,1),(1,2),(2,2), 
(2,3),(3.2),(3,3) 

<gatage> ;; = <facade 1>/(1,1),(1,2),(2,2), 
(2,3),(3,2),(3,3) 

•cdoghouse -:;= <facade 1>/(1.1),(1,2),(2,2), 
(2,3),(3,2),(3,3) 

house";; = <facadel> | <facade 2> 'd, 1),(1,2),(2,2), 

(2,3),(3)2),(3,3) 
•.school>::= <facade 1> | <facade 2>/(l,l)>(l,2),(2,2), 

(2,3),(3,2),(3,3) 
<barbershop"-;; = cfacade l> [ -.facade 2>/(l,l),(l)2)1{2,2)> 

(2,3),(3,2),(3,3) 
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barn::-- <facade l> | ■ facade 3>. (4,4),(4,10),(6,13), 
(7,7),(7,8),(8,7), 
(8,8),(9,6),(9,9), 

(10,9),(10,10),(13,13) 
<church>;:= <cross~> ^facade 4><vertical 

relation 1 v 1,1),(1,2), 

(1,3),(2,1),(2,2),(2,4), 
(3,2),(3,3),(4,4),(4,10), 
(5,4),(5.6),(6,5),(7,7), 

(7,8),(8,7),(8,8),(9,6), 
(9,9),(10,9),(10,10), 
(11.10),(11,12),(11,12). 
(12,10),(13.13) 

<silo>::= <t"acade 0>   (1,2),(1,3),(3,1),(3,3) 

■ lighthouso:: = <l'acade 0- i <roof><facade 5><vertical 
relation 1>/(1,1), 
(1.2),(1,3).(2.1). 
(2.2),(2,3),(3,1), 
(3,2),(3,3) 

<tower>;: = <facade 0 > ] <roof> <facade 5> <veitical 

relation 1>  (1,1), 

(1,2),(1,3),(2,1). 
(2,2),(2,3),(3.1), 
(3,2),(3,3) 

<buoy>;: = <facade 0> ' (1,1),(1,3),(3,1),(3,3) 
<tree>;;= <faeade 0> [ <facade 6> | <facade 7>/(l,l),(l,2),(2,l), 

(2,2),(2,3),(2,4), 

(3,2),(4,2),(4,4) 
<tent~>;; = <isosceles triangle xisosceles triangle> 

<contained within relation 5> 
<radio tower>;: = <facade 0>/(l,l),(l,2) 

<store>::= <front 3>/(l,l),(2,l),(2,2) 
<office bldg>:: = <front5 Xfront 3><vertical relation 1> | 

<front 5><offire bldgXvertical 

relation   1>/(5,6),(6,5) 
<flag pole>::= «cflagxfacade 6><horizontal 

relation 3>/(2,3),(2,4), 
(3,2),(3,3),(4,2) 

<water tower>:;= <facade 6>/(l,2),(2,l),(2,2) 

<barber pole>::= <facade 6>/(l,2),(2,l),(2,2) 

<lamppost>:: = <facade 6>/(l,2),(2,l),(2,2) 

<sign>:: = < facade  6>/(l,2),(2,l),(2,2) 
<facade 0>::= <roofxpanelxvertical relation 1> 
<facade 1>::= <roof><front Ixvertical relation 1> 
<facade 2>.:-= <roof><front 2xvertical relation 1> 

<facade 3>::= <loftxroofxcontained within relation 5> 
<front 3><vertical relation l> 
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•facade 4 

-.facade 5 

vi'acade 6" 

<facade 7 

■:inside I 

vinside 2>:; 

- inside 3>;; 

from 1 ■;; 

front 2>:; 

■ front 3   :: 

front 4   : 

<front 5 >; 

< steeple •; 

-stained glass >; 

<roof>; 

<panel>. 

<cross>; 

<right arm> 

<upright>; 

■.left arm:--: 

■ left wing>: 

•right wing>: 

<window>; 

<double door': 

<doors> 

<left door • 

<right door> 

^Jlag-' 

<bulb l> 

<bulb 2> 

<base> 

<loft> 

<ellipse > 

•steeple --front 4^-vertical relation 1 - 

<panel><base><vettical relation l> 

vbulb Ixpanelxvertical relation 1> 

= - bulb 2>-paneb- -vertical relation 1 ■ 

= <window> | <door> I 
<window><door><honzontal relation 3> 

<inside IXwindowXhorizontal relation 3 

= <double door■| 
•-window • -double doorXvertical relation 1 ■ 

= <windowXwindow> <directional relation ■ i 

v window^ <in side 3^ .directional relation> 

= <p8nel> 1 <doorxpanel><contained within 

relation 5> 

• <front l^l<inside 1^ <panel><conlained within 

relation 5> 

=   -front 2^1 vinside 2>-panels-.contained within 

relation 5 ■ 

<ftont 3> | <right wingxfront 3> 

horizontal relation 3><left wing> 

.horizontal relation 3> 

; = <inside 3 > <panel - <contained within 

relation 5> | <panel • 

;= <toof> | <stained glassXroofxcontained within 

relation 5> 

: = < isosceles triangle- 

; = <isosceles triangle"- 

. = <rectangle> 
;= <right arm"-<upright><horizontal relation 3 • 

<left armxhorizontal relation 3> 

.-. = <rectangle> 

: = <rectangle> 

; = <rectangle> 
:= <right trianglexrectanglexvertical 

relation 1> 

. = <left trianglexrectanglexvertical 

relation 1> 

; = <rectangle> 

;= <lefl doorxright doorxhorizontal relation 3> 

:; = <rectangle - 

;; = <rectangle> 

:; = <rectangle> 

;: = <rectangle • 

:; = <circle> 

.. = <ellipse> 

:; = <rectangle> 

:; = <tectangle> 

::= t:(n,h,v) 
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<circle^ 

<rectangle^ 

«.isosceles trianglo 

vright triangle^ 

vright triangle downs 

vleft triangle> 

< left triangle down^ 

vvertical relation 1> 

•^horizontal relation 3> 

<contained within relation 5N 

C(n,h,v) 

R(n,h,v) 

TI(n,h,v) 

TR(n,li,v) 

TRD(n,h,v) 

TL(n,h,v) 

TLD(n,h,v) 

♦RKn^nj) 

*R3(n,,n2) 

*R5(n i.nj.na) 
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8.   The Second Level of the Semantic Component Graramar K3* 

I 

city 

^country 

home 

backyard - 

<farm>: 

<city> 1 <county> j -home >   <backyard> i <fatm> 
vschool yard■i    church yard> ! 

■ barbers -   -forest ■ | <field • | <camp> 

shopping center ■ 

■ barbers :• vshopping center ■ ^horizontal relation 

<home •-school ^-horizontal relation ■ , 

- school   -church •• horizontal relation ■ 
home ■ vfarm^.horizontal relation ■ 

-house ■• backyard^ ^horizontal relation^ 

-house   -garage-<horizontal relation 

-house- -.doghouse •-horizontal relation 

street- home ■-horizontal relation • 

■house^ ' lampposr--^horizontal relation ■   (1,1), 

(1,2),(1,3).(1,4),(1,5). 

(2,2).(2,4),(3,3),(3,4), 

(3,6) 

garage •-.doghouse •-horizontal relation 

- doghouse^ vshed^--horizontal relation 

vtr^e ■-.backyard ■-horizontal relation-  (2,2), 

(2,3),(2,4),(3,3), 

(3,4),(3,6) 

;farm ■ sshed"- <horizontal relation^ | 

-Jarm--csilo"--horizontal relation^ j 

vfarm^-.shed^ <horizontal relation - 

<tree> <farm > '.horizontal relation -/(1,2),(1,3) 

school yard>::= <schaol^ <flag pole^ <horizontal relation'- 

church yard>;:= <churchN <tree><horizontal relation- 

<.tree> v church yard>-.horizontal relation> 

;= <barbershop • <barber pole • vhorizontal 

relation>/(l,2) 

;= <tree-> <tree> vhorizontal relational 

-.tree ' <forest><horizontal relation ■ 

:= <water towerxforestxhorizontal relational 

<tower> <forest> -.horizontal relation > | 

<radio tower^ <f orest> <horizontal 

relation"» '(1,2), 

(1,3),(1,4),(2,3), 

(2,4) 

= <tent> ' tentxhorizontal relational 

<tent> <campx ^.horizontal relation^ 

= '^tore"-<sign><horizontal relational 

<store> <store> <horizontal relation^ | 

-store" <shopping center> horizontal relation> I 

<shopping centerxshopping center 

<horizontal relation^  (1,2) 

<barbers 

<forestv 

-.field 

<camp"- 

-shopping center - 
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